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A new method for the exact solution of the interaction of an isolated state |�〉 with
an infinite dimensional quantum system Sb

∞ containing several one-parameter eigen-
value bands λν(k) ∈ Iν ≡ [aν, bν ] is developed. Unlike standard perturbation expansion
approach, this method produces correct results however strong the interaction between
the state |�〉 and the system Sb

∞. It is shown that in the case of the weak interaction this
method correctly reproduces standard results obtained within the formalism of the per-
turbation expansion method. In particular, due to the interaction with the system Sb

∞,
eigenvalue E of the state |�〉 shifts to a new position. In addition, if this eigenvalue is
embedded inside the range D=⋃ν Iν of the unperturbed eigenvalues, this shifted eigen-
value broadens and spectral distribution of the state |�〉 has the shape of the universal
resonance curve. However, if the interaction is strong, one finds much more complex
and much more complicated behavior.

KEY WORDS: interaction of quantum systems, time independent perturbation, tran-
sition probabilities

1. Introduction

In a previous paper [1] the interaction of a state |�〉 with a known infinite
quantum system Sb

∞ that contains a single one-parameter eigenvalue band was
considered. The state |�〉 with associated eigenvalue E represents one-dimen-
sional system Sa

1 . The union of systems Sa
1 and Sb

∞ represents a combined system
S∞ = Sa

1 ⊕ Sb
∞. The solution to this system was obtained by a new mathematical

method [1]. Unlike standard perturbation expansion approach [2,3], this method
provides exact expressions for the eigenvalues and eigenstates of S∞. No power
series expansion in terms of the coupling parameter is involved, and the results
obtained are valid, however strong the interaction between the systems Sa

1 and
Sb
∞. This is particularly important if the coupling between those systems is so

strong that the standard perturbation expansion series diverges. Also, if highly
precise solution to the system S∞ is required, perturbation expansion series may
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converge unacceptably slow. In addition to those computational benefits, it is
usually advantageous to find new solutions to old problems. This may provide
some previously unknown way of looking at those problems, thus suggesting
novel conceptual insight that could not be obtained otherwise.

There are numerous problems in physics and chemistry of the interaction of a
single state with a known infinite system. For example, one can consider the inter-
action of a molecule with the electromagnetic field. To a very good approximation
the interaction of an isolated eigenstate |�〉 of this molecule with the electromag-
netic field can be represented as the interaction of the one-dimensional system (the
state |�〉 with the eigenvalue E) with the known infinite system Sb

∞ (free electromag-
netic field) [2]. Due to this interaction, eigenvalue E of |�〉 is slightly shifted to a
new position. In addition, this eigenvalue is not sharp and it has the shape of the
universal resonance curve with finite uncertainty [2]. If |�〉 is an excited molecular
state, it is not stable and there is a finite probability for the transition of this state to
other molecular states. All those properties are important experimental quantities.
Investigation and theoretical prediction of those properties is a main subject of spec-
troscopy. As another example consider the interaction of the molecule situated on
the surface of some solid with this solid. One can again consider the interaction of the
particular molecular eigenstate |�〉 with this solid. System Sb

∞ represents a solid with
a surface. The solution to this system usually consists of multiple eigenvalue bands
λs(k) (s =1, 2, . . . ) [4]. In addition, system Sb

∞ may contain some discrete eigenvalues
that correspond to the surface states [5]. One can obtain the solution to the system
Sb
∞ alone by various other methods [4,5]. Usually one knows only an approximate

solution of this system [4]. Assuming this approximate solution to be good enough,
the problem is to find a solution of the combined system S∞ = Sa

1 ⊕ Sb
∞ with empha-

size on the properties of the subsystem Sa
1 . Investigation of this problem is one of the

main subjects of the surface state physics [5].
The mathematical formalism developed in the original paper [1] is not gen-

eral enough to include the treatment of the above and similar problems. In
this original formulation it was assumed that the system Sb

∞ contains a single
one-parameter eigenvalue band [1]. This is rather restrictive, since all eigenstates
|�(k)〉 of such a system are nondegenerate. There are few infinite systems with
this property. For example, electromagnetic field forms a degenerate eigenvalue
band since photons in various quantum states may have the same energy. The
same applies to eigenvalues and eigenstates of a three-dimensional solid [4].

In the present and in the following paper [6] original mathematical
formalism is generalized to the case when the system Sb

∞ contains a finite num-
ber of one-parameter eigenvalue bands. Those bands may overlap, thus describ-
ing degenerate eigenvalue bands. An arbitrary (multiparameter) eigenvalue band
can be approximated to any desired degree of accuracy with a finite number of
overlapping one-parameter eigenvalue bands. Hence the results obtained in those
papers can be generalized in a rather straightforward way to the case when the
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system Sb
∞ contains any number of arbitrary eigenvalue bands [7]. If the sys-

tem Sb
∞ contains some discrete eigenvalues and eigenstates, this can be also easily

incorporated in the suggested formalism. In this way the interaction of an iso-
lated state |�〉 with an arbitrary infinite dimensional quantum system Sb

∞ can be
described [7].

In the present and in the following paper are considered, respectivelly, time-
independent and time-dependent properties of the combined system S∞.

2. Mathematical formulation of a problem

Let us formulate in more mathematical terms the problem to be treated in
a present paper.

The state |�〉 with the eigenvalue E represents one-dimensional system Sa
1 .

With this system is associated one-dimensional space Xa
1 spanned by |�〉. The

corresponding eigenvalue equation is

A |�〉=E |�〉 , 〈�|�〉=1, (1)

where A = E |�〉〈�| is a Hermitian operator and where |�〉 is normalized to
unity. We refer to the state |�〉 as a local state.

System Sb
∞ contains κ one-parameter eigenvalue bands with eigenvalue

functions λv(k) (k ∈ [kaν, kbν ], ν=1, . . . , κ). Each λν(k) is continuous and mono-
tonic function of a parameter k in the interval [kav, kbv]. We will assume that
each λν(k) is monotonic increasing function. With minor and essentially unim-
portant adjustments all conclusions to be derived apply also to the case when
some or all λν(k) are monotonic decreasing functions.

Formally, system Sb
∞ consists of κ subsystems Sbν

∞, i.e., Sb
∞ = ∪ν Sbν

∞. With
the system Sb

∞ is associated an infinite-dimensional space Xb
∞, while with each

subsystem Sbν
∞ is associated an infinite-dimensional space Xbν

∞ , subspace of Xb
∞.

Further, in each eigenvalue band ν, to the eigenvalue λν(k) (k ∈ [kaν, kbν ]) corre-
sponds one and only one eigenstate |�ν(k)〉 ∈Xbν

∞ . Eigenvalue equation describ-
ing system Sb

∞ is hence

B |�ν(k)〉=λν(k) |�ν(k)〉 , k ∈ [kaν, kbν ] , ν =1, . . . , κ, (2a)

where B is a Hermitian operator.
Eigenstates |�ν(k)〉 of B can be orthonormalized according to

〈
�ν(k)

∣
∣�ν ′(k′)

〉= δνν ′δ(k −k′), k ∈ [kaν, kbν ] . (2b)

Relations (1) and (2) describe systems Sa
1 and Sb

∞ without mutual interac-
tion. An arbitrary interaction can be written in the form β V where V 	= 0 is a
Hermitian operator and where β � 0 is a coupling parameter. Operator V has
nonvanishing matrix elements between the state |�〉∈Xa

1 and the states |�ν(k)〉∈
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Xb
∞. Eigenvalue equation describing combined system S∞ = Sa

1 ⊕ Sb
∞ subject to

this interaction is

H |�〉= ε |�〉 , (3a)

where

H =A +B+βV. (3b)

Without loss of generality operator V can be normalized according to
〈
�
∣
∣V2
∣
∣�
〉=1. (3c)

Combined system S∞ is schematically shown in figure 1. We formally con-
sider Sb

∞ as the unperturbed system. Since each λν(k) is an increasing function
of k, all eigenvalues of the eigenvalue band ν are confined to the eigenvalue
interval Iν = [aν, bν ] where aν =λν(kaν) and bν =λν(kbν) are the smallest and the
largest possible eigenvalue, respectively. Those eigenvalue intervals may overlap,
in which case the corresponding eigenvalues of B are degenerate. Union of all
eigenvalue intervals Iν forms a range D of the unperturbed eigenvalues, D =
∪ν Iν . This range may contain one or several nonoverlaping intervals Dµ, where
each Dµ is a union of one or several eigenvalue intervals Iν . We also define a
point set –D to be a complement of D. Accordingly, D ∪ –D =R is the entire real
axis.

Figure 1. Interaction of the one-dimensional system Sa
1 with the infinite-dimensional system Sb

∞.
System Sa

1 is described by a single state |�〉 with the eigenvalue E. System Sb
∞ is a union of κ infi-

nite-dimensional subsystems Sbν
∞. Each subsystem Sbν

∞ contains a single one-parameter eigenvalue
band. Systems Sa

1 and Sb
∞ are described by eigenvalue equations (1) and (2), respectively. Combined

system S∞ is described by the eigenvalue equation (3).
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Figure 2. An example of a system Sb
∞ containing three subsystems Sbν

∞ and three one-parameter
eigenvalue bands. For explanation see text.

An example is shown in figure 2. System Sb
∞ contains three one-parameter

eigenvalue bands: eigenvalue band ν =1 (eigenvalue interval I1 = [a1, b1]), eigen-
value band ν = 2 (eigenvalue interval I2 = [a2, b2]), and eigenvalue band ν = 3
(eigenvalue interval I3 = [a3, b3]). Eigenvalue range D =∪ν Iν contains two non-
overlaping intervals, interval D1 = I1 ∪ I2 = [a1, b2] and interval D2 ≡ I3. Unper-
turbed eigenvalues λ ∈ I1 ∩ I2 ≡ [a2, b1] are doubly degenerate, while all other
eigenvalues λ∈D are nondegenerate.

3. Eigenvalues and eigenstates of the combined system

Following the original approach [1], one finds that eigenvalue equation (3a)
may contain two qualitatively different types of solutions (see Appendix A).
This equation may have embedded and isolated eigenvalues and eigenstates [1].
Each ε ∈D contained in the range D of the unperturbed eigenvalues is also an
eigenvalue of the perturbed eigenvalue equation (3a). One can denote the corre-
sponding eigenstates as |�ν(ε)〉 where index ν is reserved to label possible degen-
eracy. Eigenvalues ε ∈ D and eigenstates |�ν(ε)〉 are embedded eigenvalues and
eigenstates. Since parameter ε assumes continuous values, with respect to this
parameter embedded eigenstates are normalized to a δ-function. This is simi-
lar to the normalization (2b) of the unperturbed eigenstates |�ν(k)〉. In addition
to the embedded eigenvalues, eigenvalue equation (3a) may have some discrete
eigenvalues εI ∈D with the corresponding eigenstates |�I 〉. Those are isolated ei-
genvalues and eigenstates. Eigenstates |�I 〉 can be normalized to unity and in
this respect those eigenstates are similar to the local state |�〉 that is also nor-
malized to unity.

3.1. Characteristic and derived functions of the combined system

As shown in the Appendix A, properties of the combined system S∞ can
be expressed in terms of the characteristic functions fν(ε) and in terms of the
derived functions ων(ε), (ν = 1, . . . , κ). With each eigenvalue band ν is associ-
ated characteristic function fν(ε). This function is defined in terms of the matrix
elements 〈� |V |�ν(k)〉 and in terms of the derivatives dλν/dk according to
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fν(ε)= 〈�|V|�ν(k)〉〈�ν(k)|V |�〉
|dλν(k)/dk|

∣
∣
∣
ε=λv(k)

·
{

1 if ε ∈ Iν,

0 if ε /∈ Iν.
, (4a)

If λν(k) is monotonic increasing function one has dλν/dk �0 while if λν(k)

is monotonic decreasing function one has dλν/dk � 0. In both cases in the
expression (4a) one has to take absolute value

∣
∣dλν

/
dk
∣
∣ of this derivative.

Characteristic functions fν(ε) form a global characteristic function f (ε)

f (ε)=
κ∑

ν

fν(ε). (4b)

This function incorporates essential features of the unperturbed system Sb
∞

and of the interaction of this system with the local state |�〉. Definition (4b) is
a natural generalization of the original definition [1] of this function. Each func-
tion fν(ε) is nonnegative. In particular, fν(ε) is positive almost everywhere in the
interval Iν and it is zero outside this interval. Function f (ε) is hence positive
almost everywhere in the range D and it is zero outside this range. One also finds
that the integral

∫
f (ε)dε is finite. Characteristic function f (ε) thus satisfies:

f (ε)�0, ε ∈–D ⇒ f (ε)=0,

∫

f (ε)dε <∞. (4c)

Each derived function ων(ε) is expressed in terms of the corresponding charac-
teristic function fν(ε) according to

ων(ε)=P

∫
fν(λ)

ε −λ
dλ. (5a)

In this expression P denotes principal Cauchy integral value. If ε /∈ Iν , inte-
gration in (5a) reduces to a standard integral. If however ε∈Iν , subintegral func-
tion in (5a) diverges in the point λ=ε and one has to calculate principal Cauchy
integral value from this expression. If fν(λ) is polynomial in the interval Iν , inte-
gral (5a) can be obtained in a closed analytic form [8].

Functions ων(ε) can be expressed explicitly in terms of matrix elements
〈� |V |�ν(k)〉 and in terms of the eigenvalue functions λν(k) as

ων(ε)=P

∫ 〈�|V|�ν(k)〉 〈�ν(k)|V|�〉
ε −λν(k)

dk. (5b)

In analogy to (4b), functions ων(ε) form a global function ω(ε)

ω(ε)=
κ∑

ν

ων(ε). (5c)

One also finds

ω(ε)=P

∫
f (λ)

ε −λ
dλ. (5d)
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Since f (ε) is nonnegative one has

ω′(ε)=−
∫

f (λ)

(ε −λ)2
dλ<0, ε ∈–D, (6)

where ω′(ε) ≡ dω(ε)/dε is a derivative of ω(ε). Function ω(ε) is hence mono-
tonic decreasing outside the range D. However, inside this range expression (6)
is not valid and derivative ω′(ε) may have any value. In addition, function ω(ε)

may diverge in some singular points inside D. Such points are usually boundary
points of D [1,8].

In addition to functions f (ε) and ω(ε), it is convenient to define auxiliary
function h(ε)

h(ε)≡β2ω(ε)+E − ε. (7)

Above functions provide all necessary information for the derivation of var-
ious properties of isolated and embedded solutions of the combined system.

3.2. Isolated eigenvalues and eigenstates

As shown in the Appendix A, each isolated eigenvalue εI ∈ D of S∞ is a
root of the auxiliary function h(ε)

h(εI )≡β2ω(εI )+E − εI =0, εI ∈D. (8)

Since ω(ε) is monotonic decreasing in the point set D, function h(ε) is also
monotonic decreasing in this point set. Hence (8) may have at most one root εI

in each open interval Ī ≡ (L,R)⊆D. As shown in the Appendix A, this property
can be also derived from the interlacing rule (A4). As a result, if the point set
D is a union of τ nonoverlaping intervals, combined system S∞ may contain at
most τ isolated solutions. In addition, if Ī is such an interval, relation (8) has a
root εI ∈ Ī if and only if

h(L+0)≡β2ω(L+0)+E −L>0, (9a)

and

h(R −0)≡β2ω(R −0)+E −R <0. (9b)

In those expressions ω(L + 0) and ω(R − 0) denotes right and left limits,
respectively

ω(L+0)= lim
ε→L+0

ω(ε), ω(R −0)= lim
ε→R−0

ω(ε). (9c)
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One can consider isolated eigenvalue εI ∈ Ī as a function of parameters E

and β. Considered as a function of a local eigenvalue E, isolated eigenvalue εI ∈
Ī exists if and only if E ∈ (EL,ER) where EL <ER and where

EL =L−β2ω(L+0), ER =R −β2ω(R −0)

are left and right “critical points”, respectively. Considered as a function of a
coupling parameter β, eigenvalue εI ∈ Ī exists if and only if

β

{
>βL if ω(L+0)>0,

<βL if ω(L+0)<0,
(10a)

and

β

{
>βR if ω(R −0)<0,

<βR if ω(R −0)>0,
(10b)

where “critical points” βL and βR are

β=
L

√
L−E

ω(L+0)
, β=

R

√
R −E

ω(R −0)
. (10c)

If either βL or βR is complex, the corresponding condition (10) does not
apply. In particular, if both critical points are complex, isolated eigenvalue εI ∈ Ī

exists for each value of the coupling parameter β.
Of particular interest is the case when L≡bν is right edge of some interval

Iν = [aν, bν ]⊆D while R≡aµ >L is a left edge of another interval Iµ = [aµ, bµ

]⊆
D. In addition, one may have L=−∞ as well as R =∞. Since ω(−∞)= 0, in
the interval ĪL = (−∞, a1) ⊂ D on the extreme left the condition h(−∞) > 0 is
always satisfied. Hence one has to verify only the condition h(a1 − 0)< 0. Simi-
larly, in the interval ĪR = (bκ,∞)⊂D on the extreme right the condition h(∞)<0
is always satisfied and one has to verify only the condition h(bκ +0)>0. In the
remaining intermediate intervals ĪM ⊂D (if any) one has usually two conditions
(9a) and (9b) to satisfy. Further simplification may arise if the function ω(ε)

diverges in some boundary point ε0 of the interval under consideration. In this
case the corresponding condition (9) is automatically satisfied [1]. In most cases,
however, function ω(ε) is finite and continuous in those boundary points and
one has ω(ε0 ±0)=ω(ε0).

One also finds [1]

∂εI

∂E
= 1

1−β2ω′(εI )
,

∂εI

∂β
= 2βω(εI )

1−β2ω′(εI )
. (11)

Above relations give the rate of change of the eigenvalue εI with a change
of the local eigenvalue E and with a change of the coupling β. In particular and
since ω′(εI )<0, one has 0<∂εI

/
∂E <1. As E increases (decreases) each isolated

eigenvalue εI also increases (decreases), but with slower pace.
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Once εI is obtained as a root of (8), the corresponding normalized eigen-
state |�I 〉 can be easily derived. This eigenstate is nondegenerate, and it is given
by

|�I 〉= 1

Q
1/2
I

[

|�〉+β
∑

ν

∫ 〈�ν(k)|V|�〉
εI −λν(k)

|�ν(k)〉dk

]

, εI ∈–D, (12a)

where

QI =1+β2
∫

f (λ)

(εI −λ)2 dλ. (12b)

Normalization constant QI can be expressed in terms of a derivative ω′(ε)
of a function ω(ε) as

QI =1−β2ω′(εI ). (12c)

Above relations provide complete solution for all the properties of the
isolated eigenstates of the combined system. In particular, probability wa

I =
|〈� |�I 〉|2 to find local state |�〉 in the isolated eigenstate |�I 〉, i.e. probability
for the state |�〉 to have eigenvalue εI is

wa
I ≡ ∂εI

∂E
= 1

1−β2ω′(εI )
. (13)

Similarly, probability density ρν
I (k) = |〈�ν(k) |�I 〉|2 to find eigenstate |�I 〉

in the state |�ν(k)〉 is

ρν
I (k)= β2

QI

|〈�ν(k) |V |�〉|2
(εI −λν(k))2 . (14a)

Total probability wb
I to find isolated eigenstate |�I 〉 in a system Sb

∞ hence
equals

wb
I =

κ∑

ν

wν
I , (14b)

where

wν
I =
∫

ρν
I (k)dk (14c)

is the probability to find this eigenstate in the subsystem Sbν
∞ of a system Sb

∞.
Since one must find each isolated eigenstate |�I 〉 with certainty either in the local
state |�〉 or in some eigenstate |�ν(k)〉 of a system Sb

∞, one has

wa
I +wb

I ≡ 1
1−β2ω′(εI )

+
κ∑

ν

∫

ρν
I (k)dk =1. (15)
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This is a completeness relation that in a natural way generalizes corre-
sponding expression for the case when the system Sb

∞ contains a single one-
parameter eigenvalue band [1] to the case when this system contains a finite
number of one-parameter eigenvalue bands. This result can be formally derived
from the normalization condition 〈�I |�I 〉=1.

3.3. Embedded eigenvalues and eigenstates

Each ε∈D is an embedded eigenvalue of the combined system. In order to
derive properties of the corresponding eigenstates |�ν(ε)〉, we first introduce the
notion of a fractional shift x(ε). This quantity was originally defined for the case
when the system Sb

∞ contains a single one-parameter eigenvalue band [1]. In the
present paper fractional shift is generalized to the case when this system contains
a finite number of one-parameter eigenvalue bands.

One arrives at the notion of the fractional shift in the following way: Infi-
nite dimensional combined system S∞ = Sa

1 ⊕ Sb
∞ can be approximated to any

desired degree of accuracy with a finite-dimensional combined system Sn+1 =
Sa

1 ⊕Sb
n . This finite system contains n+1 eigenvalues εk and n+1 corresponding

eigenstates |�k〉 where n is some huge number. System Sn+1 can be constructed
in such a way that all eigenvalues λi of the corresponding unperturbed system
Sb
n are nondegenerate and that in each sufficiently small interval I ⊂D successive

unperturbed eigenvalues λi are approximately equidistant (with possible excep-
tion of few isolated points). In addition, corresponding eigenstates |�i〉 can be
chosen in such a way that matrix elements 〈� |V |�i 〉 are approximately constant
within this interval (see Appendix A). In other words, in each interval Dµ ⊂ D

the distances �λi = λi − λi−1 between adjacent unperturbed eigenvalues of Sb
n

as well as corresponding matrix elements 〈� |V |�i 〉 smoothly change with the
change of i. As n increases this smooth change improves, and in a limit n→∞
it is exact. Given a finite combined system Sn+1 with such properties, one can in
each interval Dµ ⊂D define quantities

x(εk)= εk −λk−1

λk −λk−1
, λk, λk−1 ∈Dµ. (16)

Quantity x(εk) is a fractional shift of the perturbed eigenvalue εk relative
to the unperturbed eigenvalue λk−1. Due to the interlacing rule (A4), εk is con-
tained in the interval Ik = [λk−1, λk]⊂Dµ and hence 0�x(εk)�1. In the limit n→
∞ quantities x(εk) converge to a function x(ε) of a continuous parameter ε. As
shown in the Appendix A, this function equals

x(ε)= 1
π

cot−1
(

ε −E −β2ω(ε)

πβ2f (ε)

)

, ε ∈D. (17a)
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In this expression the values x(ε) = 0 and x(ε) = 1 are computationally
equivalent. Hence one can identify x(ε) = 1 with x(ε) = 0 and one can restrict
fractional shift to the interval [0, 1):

0�x(ε)<1. (17b)

In conclusion, fractional shift x(ε) is defined via auxiliary finite systems
Sn+1 as a limit of the process n→∞. It is hence a property of the infinite system
S∞, which is the n→∞ limit of those finite systems. One can visualize fractional
shift as the ratio of two infinitesimal quantities. It is the ratio of the infinitesimal
shift (εk −λk−1) of the perturbed eigenvalue εk relative to the unperturbed eigen-
value λk−1 and of the infinitesimal interval dk =λk −λk−1 between two adjacent
unperturbed eigenvalues. The notion of a fractional shift is explained in more
details in the Appendix A.

According to (17a), fractional shift is well defined almost everywhere in the
range D where the functions f (ε) and ω(ε) are well defined. Exceptions are the
points ε = εa ∈ D (provided such points exist) that satisfy conditions f (εa) = 0
and h(εa)=0. In each point ε = εa expression (17a) formally contains undefined
ratio 0

/
0 and fractional shift can assume any value in the interval [0,1). We call

each such point a point of anomal resonance [1]. We also call each point ε = εc

that satisfies f (εc)=0 a critical point. For the reasons to be explained in the fol-
lowing section, we call each point ε = εr that satisfies h(εr)=0 a resonant point.
According to those definitions, point ε = εa is an anomal point if it is simulta-
neously a critical point and a resonant point. Unless otherwise specified, we will
assume that the system S∞ contains no anomal points.

Fractional shift is a key quantity for the derivation of various properties of
embedded eigenstates. Of special importance is the probability density ρ a(ε) to
find the state |�〉 with the eigenvalue ε ∈D. This probability density is a sum

ρ a(ε)=
∑

ν

|〈� |�ν(ε)〉|2, (18)

where |�ν(ε)〉 is an eigenstate of the combined system with the eigenvalue ε and
where the summation is performed over all such eigenstates.

In the Appendix A we show that ρ a(ε) can be expressed in terms of the
fractional shift x(ε) according to

ρ a(ε)= sin2
(πx(ε))

π2β2f (ε)
, ε ∈D. (19)

Hence and from (17a) one derives

ρ a(ε)= β2f (ε)

π2β4f 2(ε)+ (β2ω(ε)+E − ε
)2 . (20)
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Since f (ε) = 0 if ε ∈ –D, density ρ a(ε) vanishes in the point-set –D. As
expected, probability to find local state |�〉 in some embedded eigenstate |�ν(ε)〉
with ε ∈–D is zero, since no such eigenstate exists.

Density ρ a(ε) can be written as a sum

ρ a(ε)=
κ∑

ν=1

ρ a
ν (ε), (21a)

where

ρ a
ν (ε)= β2fν(ε)

π2β4f 2(ε)+ (β2ω(ε)+E − ε
)2 . (21b)

In analogy to (20) one has ρ a
ν (ε)=0 if ε /∈Iν . Density ρ a

ν (ε) can be nonzero
only inside the interval Iν . In addition, one finds that there exists an orthonor-
malized set {|�ν(ε)〉} that satisfies (see Appendix A)

〈� |�ν(ε)〉=√ρ a
ν (ε), ν =1, . . . , κ. (21c)

With this choice one has ρ a
ν (ε) = |〈� |�ν(ε)〉|2. Accordingly, ρ a

ν (ε) is a
probability density to find the state |�〉 in the eigenstate |�ν(ε)〉 of the combined
system.

Since ρ a
ν (ε) vanishes outside the interval Iν , one has 〈� |�ν(ε)〉=0 if ε /∈Iν .

This suggests that embedded eigenstates |�ν(ε)〉 are defined only for those values
of ε that satisfy ε ∈ Iν . One finds that this is indeed the case. However, unper-
turbed eigenstates |�ν(k)〉 are also defined only for those values of k that satisfy
λν(k)=ε∈Iν . There is hence one-to-one correspondence between unperturbed ei-
genstates |�ν(k)〉 and embedded eigenstates |�ν(ε)〉. In particular, if |�ν(k)〉 is
m-degenerate, embedded eigenstate |�ν(ε)〉 where ε =λν(k) is also m-degenerate.
Hence in analogy to (2b)

〈
�ν(ε)

∣
∣�ν ′(ε′)

〉= δνν ′(ε − ε′), ε ∈ Iν. (21d)

Density ρ a(ε) can be conveniently analyzed in terms of the root or roots
εr ∈D of the auxiliary function h(ε), provided such root or roots exist:

h(εr)≡β2ω(εr)+E − εr =0, εr ∈D. (22)

By definition, each such root is a resonant point. According to (17a), if
f (εr) 	= 0 then x(εr)= 0.5. Resonant point ε = εr hence corresponds to the per-
turbed eigenvalue that is exactly in the middle between two adjacent infinitesi-
mally close unperturbed eigenvalues [1]. If however f (εr) = 0, the point εr ≡ εa
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is the point of anomal resonance, and in this case fractional shift x(εr) is unde-
fined. According to (20) close to the resonant point ε = εr , density ρ a(ε) tends
to have a maximum. In particular, density ρ a(εr) in a resonant point equals

ρ a(εr)= 1
π2β2f (εr)

.

This density is especially large if the coupling β is relatively small. Note
that this density diverges if εr is an anomal point, that is if f (εr)=0.

Relations (8), (13) and (20) determine eigenvalue or spectral distribution of
the local state |�〉. If one performs a measurement of the eigenvalue on this
state, one obtains the result εI /∈D with the probability wa

I (expression (13)) and
the result ε ∈D with a probability density ρ a(ε) (expression (20)). Hence those
relations completely determine spectrum of the state |�〉 that interacts with the
infinite system S∞. This spectral (eigenvalue) distribution can be written in a
more compact form

ρ(ε)≡ρ a(ε)+
∑

I

w a
I δ(ε − εI ). (23)

Total probability for the state |�〉 to have either some isolated eigenvalue
εI ∈–D or some embedded eigenvalue ε ∈D must be one. Hence

∫

ρ(ε)dε ≡
∫

ρ a(ε)dε +
∑

I

w a
I =1, (24a)

where

wa
D =

∫

ρ a(ε)dε (24b)

is the probability to find the state |�〉 in any of the embedded eigenstates
|�ν(ε)〉, i.e. to find it with any of the eigenvalues ε ∈D.

Relation (24a) is a key completeness relation. It can be used as an efficient
test for the validity of the suggested approach. This relation can be derived in
a more formal way from the definition wa

I =|〈� |�I 〉|2 and from the expression
(21c). Since the eigenstates |�I 〉 and |�ν(ε)〉 form a complete set in a space cor-
responding to the combined system S∞, those expressions imply

|�〉=
∑

I

√
wa

I |�I 〉+
∑

ν

∫ √
ρ a

ν (ε) |�ν(ε)〉dε. (25)

Normalization condition 〈� |�〉=1 now implies (24a).
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3.4. Eigenvalue distribution of a local state in the weak coupling limit

In the case of the weak coupling (small β), eigenvalue distribution ρ(ε) of
the state |�〉 simplifies. If β is small there are two qualitatively different cases,
the case E ∈ –D and the case E ∈D. There are also small transition regions close
to the boundaries between D and –D.

If E ∈ –D is an interior point in –D and if β is sufficiently small, relation (8)
has a root εI ∈–D that is close to E. This root is an isolated eigenvalue. Neglecting
terms of the order O(β4), it can be approximated as

εI ≈E +β2ω(E), εI ∈–D. (26)

In addition, if β is small relation (13) implies wa
I ≈ 1. Corresponding iso-

lated eigenstate |�I 〉 is hence essentially local state |�〉 that is slightly perturbed.
In conclusion, the effect of the weak interaction of the local state |�〉 that has
the eigenvalue E∈–D with the system Sb

∞ is that this eigenvalue is shifted to a new
position εI ∈–D. The corresponding perturbed eigenstate |�I 〉 is essentially identi-
cal to the unperturbed eigenstate |�〉. Eigenvalue distribution ρ(ε) of a state |�〉
is hence ρ(ε)≈ δ(ε − εI ).

Another possibility is E ∈D where E is an interior point in D. In this case
and if β is sufficiently small (resonance approximation [1]), relation (22) has a
root εr ∈D that is close to E. If f (εr) 	=0, density ρ a(ε) can be approximated as
[1]

ρ a(ε)≈ρa0(ε)= β2f (εr)

π2β4f 2(εr)+ (ε − εr)
2 ·
{

1 if ε ∈D,

0 if ε /∈D.
(27)

Inside range D function ρa0(ε) is identical to the universal resonance curve
[9], while outside this range it is zero. This function is a bell shaped curve trun-
cated at the boundary points of the interval Dµ ⊆D that contains resonant point
ε = εr . It has maximum ρa0

max in the point εr ∈D. One finds

ρa0
max =ρ a(εr)= 1

π2β2f (εr)
. (28a)

For small β this maximum is very large. At the position where ρa0(ε) has
half of its maximum value, it has the width

�εr =2πβ2f (εr). (28b)

In a resonance approximation the distance between the resonant point ε =
εr and the nearest boundary point of D is much larger than the width �εr .
Hence

∫

ρa0(ε)dε ≈1. (29)
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Completeness relation (24a) implies wa
I ≈0. Eigenvalue distribution ρ(ε) of

a state |�〉 is hence ρ(ε)≈ρa0(ε).
Neglecting terms of the order O(β4), resonant point can be approximated

as

εr ≈E +β2ω(E), εr ∈D. (28c)

This expression is formally identical to the expression (26). However, εr ∈D

is now a resonant eigenvalue that is embedded in the range D. Unlike isolated
eigenvalues εI ∈ –D that are sharp and have no width, each resonant eigenvalue
εr ∈ D that satisfies f (εr) 	= 0 generates a universal resonance curve with maxi-
mum at this eigenvalue and with a finite width �εr 	=0.

In conclusion, in the resonance approximation local eigenvalue E ∈ D is
shifted to a resonant point εr ∈ D. In addition, due to the interaction with the
infinite system Sb

∞, this shifted eigenvalue is broadened and it has the shape of
a resonance curve with the width �εr . The area of this curve equals one. This
reproduces well-known results obtained within the formalism of the perturbation
expansion approach [2]. It also justifies the name “resonant point” for each root
εr ∈ D of h(ε). Strictly, this name is justifies only in the case of the weak cou-
pling. It is however natural to generalize this notion to the case of an arbitrary
strong interaction.

There is finally a third possibility that the unperturbed eigenvalue E is
either a boundary point of a range D or very close to some boundary point of
this range. In this case the result is intermediate between the above two cases.
For example, if E is a boundary point of D and if the coupling β is small,
instead of the expression (29) one obtains

∫

ρa0(ε)dε ≈0.5.

Due to the completeness relation (24a) the missing probability is contained
in the isolated eigenstate |�I 〉 and the probability to find the state |�〉 in this
eigenstate equals wa

I ≈0.5.
In the above discussion we have tacitly assumed that for sufficiently small

β either relation (8) or relation (22) has one and only one solution. If ω(ε) is
bounded everywhere, this is indeed the case. However, in boundary points of the
range D function ω(ε) may diverge [1,7,8]. If this is the case, than relation (8)
and/or relation (22) has an additional root close to this boundary point. Due to
the completeness relation (24a), in the case of sufficiently small β the importance
of those additional points is negligible. Only if the interaction is not small the
contribution of those additional points to probabilities wa

I and other quantities
of interest can be significant.
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4. Example: interaction of a state |�〉 with several one-dimensional solids
in the nearest neighbor tight-binding approximation

We will illustrate the method described in previous sections with a follow-
ing simple example. Let the system Sb

∞ be the set of κ one-dimensional solids
in the nearest-neighbor tight-binding approximation [3,4]. Each such solid is a
subsystem Sbν

∞ (ν = 1, . . . , κ) of the system Sb
∞. With each site of the subsys-

tem Sbν
∞ is associated a single state |ν, j〉 (j = 1, 2, . . . ). In the nearest neighbor

tight-binding approximation all matrix elements 〈ν, i |H |ν, i 〉 of the Hamiltonian
H between states on the same atomic site equal αν , while all matrix elements
〈ν, i |H |ν, j 〉 between states on the adjacent atomic sites equal γν . All remaining
matrix elements are zero. In chemistry this model is known as a Hückel approx-
imation [3]. Eigenvalues λν,i and eigenstates

∣
∣�ν,i

〉
of such one-dimensional solid

containing n atoms are [3]

λν,i =αν +2γν cos
(

π

n+1
i

)

,
∣
∣�ν,i

〉=
√

2
n+1

n∑

j=1

sin
(

π

n+1
ij

)

|ν,j〉, i =1,... ,n.

(30)

This solid represents a finite Hückel chain. System Sbν
∞ is an infinite Hückel

chain obtained in a limit n→∞. In this limit discrete eigenvalues and eigenstates
are replaced with continuous eigenvalues and eigenstates, respectively [1]

λν(k)=αν +2γν cos (k) , |�ν(k)〉=
√

2
π

∞∑

j=1

sin (kj) |ν, j〉 , 0<k <π.

(31a)

According to (31a), each subsystem Sbν
∞ of Sb

∞ contains a single one-param-
eter eigenvalue band with the eigenvalue function λν(k) in the interval Iν [10].

Iν = [aν, bν ]≡ [αν −2γν, λν +2γν ] , ν =1, . . . , κ. (31b)

System Sb
∞ is a union of κ such subsystems and range D =⋃ν Iν is a union

of κ intervals Iν .
An arbitrary interaction of a local state |�〉 with a system Sb

∞ can be writ-
ten in the form β V (β � 0) where matrix element of the Hermitian operator V
between the state |�〉 and j th state of the νth Hückel chain is 〈� |V |ν, j 〉=βν,j .
Hence and from (31a)

〈� |V |�ν(k)〉=
√

2
π

∞∑

j=1

βν,j sin(kj), (32a)
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while normalization (3c) implies
∑

j,ν

β2
ν,j =1. (32b)

Above relations describe most general interaction between a local state |�〉
and a set of κ infinite Hückel chains. For the sake of simplicity assume that local
state |�〉 interacts only with first state |ν,1〉 of each Hückel chain. In this case
(32) reduces to

〈� |V |�ν(k)〉=βν

√
2
π

sin(k),

κ∑

ν

β2
ν =1, (33)

where βν ≡βν,1.This situation is shown in figure 3.
We will solve combined system S∞ shown in figure 3 with the method

described in previous sections. First step in this method is to derive characteristic
functions of the system S∞. According to the definition (4a) and using (31)–(33)
one finds

fν(ε)= β2
ν

2πγν

√
4−gν(ε)2 ·

{
1 if ε ∈ Iν,

0 if ε /∈ Iν,
(34a)

where

gν(ε)= ε −αν

γν

. (34b)

Figure 3. Interaction of a local state |�〉(system Sa
1 ) with κ infinite one-dimensional solids (Hückel

chains) in the nearest-neighbor tight-binding approximation (system Sb
∞). Each solid (subsystem

Sbν
∞) is characterized by two parameters: αν (Hückel parameter α) and γν (Hückel parameter β). The

state |�〉 has eigenvalue E and it interacts only with the first atom of each one-dimensional solid.
This interaction is fully defined by matrix elements 〈�|βV|ν,1〉=ββν .
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Note that if ε ∈ Iν one has gν(ε) ∈ [−2, 2] while if ε /∈ Iν one has gν(ε) /∈
[−2, 2].

Expression (34) generalizes corresponding expression derived in [1] and it
can be obtained along the same lines.

Once characteristic functions fν(ε) are known, one derives functions ων(ε)

according to (5a). One finds

ων(ε)≡P

∫
fν(λ)

ε −λ
dλ= β2

ν

2γν

⎧
⎪⎪⎨

⎪⎪⎩

(
gν(ε)+

√
gν(ε)2 −4

)
if ε <aν,

gν(ε) if ε ∈ Iν = [aν, bν ] ,(
gν(ε)−

√
gν(ε)2 −4

)
if ε >bν.

(35a)

Each ων(ε) is a continuous function of ω on the entire real axes. In partic-
ular, in the boundary points of the interval Iν = [aν, bν ] one has

ων(aν ±0)≡ων(aν)=−β2
ν

γν

, ων(bν ±0)≡ων(bν)= β2
ν

γν

. (35b)

Global functions f (ε) and ω(ε) are sums (4b) and (5c), respectively. Since
each ων(ε) is continuous on the real axis, global function ω(ε) is also contin-
uous on the real axis. This has nontrivial consequences on the solutions of the
combined system.

Expressions (34) and (35) provide all necessary information for the descrip-
tion of isolated and embedded solutions of the combined system.

4.1. Isolated and embedded solutions

Each isolated eigenvalue εI ∈ –D is a root of the equation (8) where func-
tion ω(ε) is given by (5c) and (35a). According to (35b), all ω(aν) and ω(bν)

are finite. Hence, in order for an isolated eigenstate εI to exist in the interval(
bν, aµ

)⊂ –D, two nontrivial conditions (9) should be satisfied. Once an isolated
eigenvalue εI is found as a root of (8), the corresponding normalized eigenstate
|�I 〉 is given by (12). Using (31a) and (33) one finds

|�I 〉= 1

Q
1/2
I

⎡

⎣|�〉+β

√
2
π

∑

ν

π∫

0

sin(k)

εI −αν −2γν cos(k)
|�ν(k)〉dk

⎤

⎦ , εI ∈ –D,

(36a)
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where QI = 1 − β2ω′(εI ) and where ω′(εI ) =∑κ
ν ω′

ν(εI ). From (35a) and in the
case ε /∈ Iν one finds [1,11]

ω′
ν(ε)= β2

ν

2γ 2
ν

√
g2

ν (ε)−4

{√
g2

ν (ε)−4+gν(ε) if ε <aν,√
g2

ν (ε)−4−gν(ε) if ε >bν,
. (36b)

Since gν(ε)<−2 if ε <aν while gν(ε)>2 if ε >bν , one has ω′
ν(ε)<0 when-

ever ε /∈ Iν . Hence ω′(ε)<0 if ε ∈–D, in accord with (6).
For completeness note that inside the interval Iν one has

ω′
ν(ε)= β2

ν

2γ 2
ν

if ε ∈ [a,
ν, bν

]
. (36c)

From above relations one finds amplitudes 〈� |�I 〉 = Q
−1/2
I and 〈ν, i |�I 〉.

In particular one has

〈ν, i |�I 〉= 2β

π
√

QI

∫ π

0

sin(k) sin(ik)

εI −αν −2γν cos(k)
dk. (37)

Each eigenstate of the combined system can be expressed as a linear com-
bination of a local state |�〉 and of all states |ν, i〉 situated on κ Hückel chains.
According to (37), only those states |ν, i〉 that are close to the beginning of
Hückel chains may have significant contribution to an isolated eigenstate |�I 〉 of
the combined system. As one penetrates inside those chains, amplitudes 〈ν, i |�I 〉
generally decrease. This is a property that characterizes surface states. It follows
from the fact that as i increases sin(ik) becomes strongly oscillatory function of
k. Hence for large i amplitudes 〈ν, i |�I 〉 tend to be small. In particular one has
limi→∞ 〈ν, i |�I 〉=0.

Using above relations one can find all isolated eigenvalues and eigenstates
of the combined system. First one has to verify conditions (9) in order to find
out whether a particular interval Ī = (L,R) ⊆ –D contains an isolated eigenvalue
εI ∈ Ī . If this is the case, εI is obtained as a root of the auxiliary function h(ε).
Once εI is known, the corresponding normalized eigenstate |�I 〉 is given by (36).
In particular, probability wa

I =|〈� |�I 〉|2 to find the state |�〉 with the eigenvalue
εI is given by (13) where derivative ω′(εI ) is obtained using expression (36b).
Concerning embedded eigenstates, probability density ρ a(ε) to find the state |�〉
with the eigenvalue ε∈D is given by relation (20) where functions f (ε) and ω(ε)

are obtained using (34) and (35a). Those probabilities and probability density
determine eigenvalue distribution ρ(ε) of the local state |�〉. One way to verify
this distribution and therefore to verify the suggested method is to verify if this
distribution satisfies completeness relation (24a).
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4.2. Calculated examples

In order to illustrate key features of the interaction of the state |�〉 with
several infinite Hückel chains, it is sufficient to consider the interaction of this
state with only two such chains. Accordingly, we consider system Sb

∞ that con-
tains two infinite Hückel chains which represent subsystems Sb1

∞ and Sb2
∞, respec-

tively. Each of those subsystems generates one-parameter eigenvalue band. Two
qualitatively different cases are possible. Either those eigenvalue bands partially
or completely overlap, or those eigenvalue bands are distinct and they do not
overlap.

As a first example consider the unperturbed system Sb
∞ characterized by the

parameters α1 = −2, α2 = 2, γ1 = 1 and γ2 = 0.5. Assume also that the relative
couplings of subsystems Sb1

∞ and Sb2
∞ with the local state |�〉 are β1 = 0.9 and

β2 =
√

1−β2
1 = 0.43589, respectively. This last expression follows from the nor-

malization condition (33). We shell refer to this choice of parameters as choice
A. According to (31b), with such a choice one has I1 = [−4, 0] and I2 = [1, 3].
Intervals I1 and I2 do not overlap and point set –D is a union of three intervals,
left interval ĪL = (−∞,−4), intermediate interval ĪM = (0,1) and right interval
ĪR = (3,∞). Hence the combined system S∞ may contain at most three iso-
lated eigenstates. Using expression (35a) one finds values of the function ω(ε) in
the boundary points of the range D: ω(−4)=−0.84189 < 0, ω(0)= 0.70818 > 0,
ω(1)=−0.07061<0 and ω(3)=0.54906>0. Hence and according to conditions
(9), left isolated eigenvalue εL <−4 exists if and only if

β2ω(−4)+E +4≡−0.84189β2 +E +4<0. (38a)

Right isolated eigenvalue εR >3 exists if and only if

0.54906β2 +E −3>0, (38b)

while intermediate isolated eigenvalue εM ∈ ĪM exists if and only if

0.70818β2 +E >0 and −0.07061β2 +E −1<0. (38c)

Once εI is known to exist, it is obtained as a root of the expression (8) and
the corresponding probability wa

I is obtained according to (13) where derivative
ω′(εI ) is obtained using (5c) and (36b). Concerning probability density ρ a(ε) to
find the state |�〉 with the eigenvalue ε∈D, this density is given by general rela-
tion (20) where functions f (ε) and ω(ε) can be obtained using relations (34) and
(35a), respectively.

Some examples of eigenvalue distributions corresponding to the parameter
choice A are shown in figures 4 and 5. In figure 4 the case E = −1 ∈ D and
β = 0.2 is considered. In this case coupling β is relatively weak and eigenvalue
E is an interior point of the range D. Those are conditions of the resonance
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Figure 4. Density distribution ρ a(ε) of a local state |�〉 for a parameter choice A and in the case
E = −1 and β = 0.2. (a) Density distribution ρ a(ε). (b) Figure (a) amplified. Density ρ a(ε) (solid

line) is almost identical to the truncated universal resonance curve ρa0(ε) (dashed line).

approximation and eigenvalue distribution of the state |�〉 has approximately
the shape of the universal resonance curve. This is emphasized in figure 4(b)
which is figure 4(a) amplified. As shown in this figure, there is almost no differ-
ence between exact density ρ a(ε) and truncated universal resonance curve ρa0(ε).
Density ρa0(ε) has maximum in the resonant point ε = εr and it has the width
�εr =2πβ2f (εr). Solving (22) and using (28b) one finds εr =−0.9862 and �εr =
0.0558. Approximation (28c) produces εr ≈ −0.9864 which differs only slightly
from the exact value for εr . One also finds

∫
ρ a(ε)dε=1 in accord with the res-

onance approximation. Completeness requirement (24a) hence implies that there
are no isolated eigenvalues. This also follows from the conditions (38).
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Figure 5. Eigenvalue distribution of a local state |�〉 for a parameter choice A and with few selected
values of parameters E and β. (a) E = 0.3 	∈ D,β = 0.2, (b) E = 0.3, β = 1.1, (c) E = 0.3 	∈ D,

β =3, (d) E =−1∈D,β =3.

Few other examples are shown in figure 5. In figure 5(a) the case E=0.3∈ –D
and β =0.2 is considered. Coupling is again relatively weak, but this time eigen-
value E is an interior point of the point set –D. Conditions (38) now imply that
combined system contains an isolated eigenvalue εM in the interval ĪM = (0,1)

and no other isolated eigenvalues. Exact expression (8) gives εM = 0.3136, while
approximate expression (26) yields εM ≈0.3139 which is quite close to the exact
value. The interaction of the local state |�〉 with the infinite system S∞ shifts
original eigenvalue E = 0.3 to a new position εM = 0.3136. The corresponding
isolated eigenstate |�I 〉 is given by expression (36a). In particular, the probability
wa

M to find local state |�〉 in this eigenstate is given by relation (13). Using (36b)
one finds wa

M = 0.9807 ≈ 1. Isolated eigenstate |�M〉 is thus essentially initial ei-
genstate |�〉 slightly perturbed. In addition to the isolated eigenvalue εM , eigen-
value distribution of the state |�〉 contains a small contribution from embedded
eigenvalues ε ∈D. Using (20) one derives density distribution ρ a(ε). In particu-
lar, one finds wa

D = ∫ ρ a(ε)dε = 0.0193. Hence wa
M + wa

D = 1 in accord with the
completeness requirement (24a).

In figures 4 and 5(a) coupling β is relatively weak and local state |�〉 is
only slightly perturbed by the interaction with the system Sb

∞. The effect of
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this interaction can be well described within the formalism of the perturbation
expansion method. The case with relatively strong coupling is shown in fig-
ure 5(b) where one has E = 0.3 ∈ –D and β = 1.1. Conditions (38) again imply
that combined system contains a single isolated eigenvalue εM in the interval
ĪM = (0,1). This time one finds εM =0.5775, wa

M =0.6786 and wa
D = ∫ ρ a(ε)dε =

0.3214. The contribution wa
D of embedded eigenstates to the local state |�〉

is now significant. As required by the completeness relation, one finds wa
M +

wa
D = 1. In figure 5(c) the case E = 0.3 ∈ –D and β = 3 is considered. Coupling

is extremely strong and the system S∞ contains three isolated eigenstates. One
finds εL = −4.2829, εM = 0.9162 and εR = 3.3105 with corresponding probabili-
ties wa

L =0.2017, wa
M =0.1280 and wa

R =0.3163, respectively. One also finds wa
D ≡∫

ρ a(ε)dε = 0.3540. Hence wa
D + wa

L + wa
R + wa

M = 1 in complete agreement with
the completeness requirement. In figure 6(d) the case E = −1 ∈ D and β = 3
is considered. Local eigenvalue E is now embedded in the continuum of the
unperturbed eigenvalues and the coupling β is also extremely strong. The system
again contains three isolated eigenstates and one finds eigenvalues εL =−4.6268,
εM = 0.6840 and εR = 3.0448 with probabilities wa

L = 0.3315, wa
M = 0.2145 and

wa
R = 0.1030, respectively. One also finds wa

D ≡ ∫ ρ a(ε)dε = 0.3510 and hence
wa

D +wa
L +wa

R +wa
M =1.

In the case of strong couplings resonance approximation breaks and eigen-
value distribution of a local state |�〉 has no resemblance to the universal reso-
nance curve, neither in the case E ∈D nor in the case E /∈D (see figure 5(b,c,d)).
However and as required by the completeness relation, in all cases one has
wa

D +wa
L +wa

R +wa
I =1.

4.2.1. Verification of the completeness relation (24a)
Verification of the completeness relation provides a strong support for

the correctness of the suggested method. In the above examples this rela-
tion is verified for few selected values of the coupling β. In figure 6 this
relation is verified more systematically. In this figure probabilities wa

L, wa
M ,

wa
R and wa

D = ∫ ρ a(ε)dε as well as their sum are plotted as functions of a
coupling β. This is done for the parameter choice A considered above and
for two qualitatively different values of a local eigenvalue E. In figure 6(a)
one has E = 0.3 ∈ –D which is an interior point of the point set –D. The
points (∗), (◦) and (•) in this figure correspond to the spectral distribu-
tions shown in figures 5(a–c), respectively. In the case E = 0.3 conditions
(38c) are satisfied for each value of β. Hence intermediate isolated eigenvalue
εM ∈ (0,1) exists for each β. Concerning left isolated eigenvalue εL < −4, con-
dition (38a) implies that this eigenvalue exists if and only if β >βL where βL =√−4.3/ω(−4)= 2.2600. Similarly, condition (38b) implies that right isolated ei-
genvalues εR > 3 exists if and only if β >βR where βR =√2.7/ω(3)= 2.2176. If
the coupling is as small as β ∈ [0, βR] combined system contains only interme-
diate isolated eigenstate |�M〉. The state |�〉 is hence a linear combination of
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Figure 6. Probabilities wa
L , wa

R , wa
M and wa

D = ∫ ρ a(ε)dε as functions of a coupling β for a param-
eter choice A and for two qualitatively different values of the local eigenvalue E. (a) E = 0.3 ∈ D.
Eigenvalue distributions corresponding to points (∗), (◦) and (•) are shown in figures 5(a–c), respec-
tively. (b) E = −1 ∈ D. Eigenvalue distributions corresponding to points (∗) and (◦) are shown in

figures (4) and 5(d), respectively.

this eigenstate and of the embedded eigenstates |�ν(ε)〉. If β ∈ (βR,βL] combined
system contains intermediate eigenstate |�M〉 as well as right isolated eigenstate
|�R〉. In this case the state |�〉 is a linear combination of those two isolated ei-
genstates and of the embedded eigenstates |�ν(ε)〉. Finally if the coupling is as
strong as β >βL, combined system contains all three isolated eigenstates. In this
case the state |�〉 is a linear combination of all those isolated eigenstates and of
the embedded eigenstates |�ν(ε)〉. In all cases one finds wa

D +wa
L +wa

M +wa
R =1.
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In figure 6(b) the case E = −1 ∈ D is considered. The points (∗) and (◦)

in this figure correspond to spectral distributions shown in figures (4) and 5(d),
respectively. Local eigenvalue E=−1 is embedded in the range D of unperturbed
eigenvalues. Therefore, if the coupling is small enough the system S∞ contains no
isolated eigenstate. One finds that the intermediate eigenvalue εM ∈ (0,1) exists if
and only if β > βM = 1.1883, left isolated eigenvalue εL < −4 exists if and only
if β > βL = 1.8877, while right isolated eigenvalue εR > 3 exists if and only if
β >βR =2.6991. One again finds wa

D +wa
L +wa

M +wa
R =1 in complete agreement

with the completeness requirement.
In figure 6 is considered a parameter choice A when intervals I1 and I2

do not overlap. Completeness relation for the case when those intervals over-
lap is verified in figure 7. In this figure parameter choice α1 =0, α2 =0.5, γ1 =1,

γ2 =0.5, β1 =0.7, and β2 =
√

1−β2
1 =0.71414 is considered (choice B). According

to (31b) those parameters imply I1 = [−2, 2] and I2 = [−0.5, 1.5]. Since I2 ⊂I1 the
range D coincides with the interval I1 (D≡I1). In addition, in the interval I2 the
unperturbed system Sb

∞ as well as the combined system S∞ is degenerate. Since
D contains a single finite interval I1, point-set –D is a union of two intervals, left
interval ĪL = (−∞,−2) and right interval ĪR = (2,∞). Hence the combined sys-
tem S∞ may contain at most two isolated eigenstates, left isolated eigenstate |�L〉
with the eigenvalue εL < −2 and right isolated eigenstate |�R〉 with the eigen-
value εR > 2. In the boundary points –2 and 2 of the range D function ω(ε)

has values ω(−2)=−0.70289 and ω(2)=0.87961, respectively. Hence left isolated
eigenvalue εL exists if and only if

−0.70289β2 +E +2<0, (39a)

while right isolated eigenvalue εR exists if and only if

0.87961β2 +E −2>0. (39b)

Considered as a function of β, left isolated eigenvalue εL exists if and only
if β >βL, where

βL =
√

E +2
−ω(−2)

,

while right isolated eigenvalue εR exists if and only if β >βR, where

βR =
√

2−E

ω(2)
.

If E = 1 ∈ D local eigenvalue is embedded in the range D and one finds
two critical points, βL = 2.0659 and βR = 1.0662. This situation is shown in fig-
ure 7(a). If however E =2.5∈–D there is only one critical point βL =2.5303, while
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Figure 7. Probabilities wa
L , wa

R , and wa
D = ∫ ρ a(ε)dε as functions of a coupling β for a parame-

ter choice B and for two qualitatively different values of the local eigenvalue E. (a) E = 1 ∈D, (b)
E =2.5∈D.

βR is complex. In this case left isolated eigenvalue εL <−2 exists if and only if
β >βL, while right isolated eigenvalue εR exists for each value of the coupling β.
This situation is shown in figure 7(b).

In the entire interval β ∈ [0, 4.5] considered in figures 6 and 7 theoreti-
cal probabilities wa

D and wa
I are in complete agreement with the completeness

requirement (24a). This agreement is a strong though indirect verification of
the expression (20) for the density ρ a(ε) (since this density determines proba-
bility wa

D = ∫ ρ a(ε)dε) and of the expressions (8) and (13) (since those expres-
sions determine probabilities wa

I ). Suggested approach produces correct results
for each coupling, however strong. This is not the case with standard perturba-
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tion expansion method. No power series expansion can produce correct result
beyond the critical points in figures 6 and 7. For example, in the point β = βR

in figure 7(a) probability wa
D considered as a function of coupling β is not ana-

lytic. Hence standard perturbation expansion approach can not produce correct
results for β �βR.

4.2.2. Eigenvalue distribution of the isolated state |�〉
As shown in a previous section, completeness relation (24a) is correctly

reproduced by the suggested approach. However, this relation expresses only a
global property of the eigenvalue distribution ρ(ε) of a state |�〉. We will now
verify in more details this distribution. In order to do this one has to verify
probability density ρ a(ε) as well as eigenvalues εI and corresponding proba-
bilities wa

I . This will be done by comparing those quantities with the results
obtained in a standard way from finite-dimensional combined systems Sn+1 con-
taining finite Hückel chains. Each such finite system is described by an (n+1)×
(n+1) eigenvalue equation that can be solved by standard diagonalization meth-
ods. In the limit n→∞ the results obtained in a standard way from those finite
systems should converge to the theoretical results for the infinite system S∞. In
order to emphasize that various quantities refer to a finite combined system Sn+1,
we will denote those quantities with explicit dependence on n. Accordingly, εk(n)

are eigenvalues of Sn+1, wa
k (n) are corresponding probabilities, etc.

Concerning isolated eigenvalues εI and the corresponding probabilities wa
I ,

this comparison is simple. One has to compare each isolated eigenvalue εI ∈ –D
of S∞ with the corresponding eigenvalue εk(n) ∈ –D of Sn+1. Since in each open
interval Ī ⊂–D can exist at most one eigenvalue εI of S∞ and at most one eigen-
value εk(n) of Sn+1, it is easy to identify eigenvalue εk(n) that corresponds to the
isolated eigenvalue εI . Once those eigenvalues are known, one has to compare
probability wa

I = |〈� |�I 〉|2 with the probability wa
k (n) = |〈� |�k〉|2 where |�k〉

is eigenstate of Sn+1 with the eigenvalue εk(n). Concerning probability density
ρ a(ε), it should be compared with probabilities wa

k (n) that correspond to the
eigenvalues εk(n) ∈ D of Sn+1. This comparison requires more subtle approach.
If probabilities wa

k (n) and eigenvalues εk(n)∈D change relatively smoothly with
index k, in a limit n → ∞ those probabilities can be replaced with ρ a(ε)dε.
Hence a rather simple approach is to compare discrete probability wa

k (n) with
ρ a(εk(n))�εk(n) where �εk(n)=εk(n)−εk−1(n) is the interval between two adja-
cent eigenvalues εk(n) and εk−1(n). Slightly better choice is to use the average of
the intervals �εk+1(n) and �εk(n) on both sides of the eigenvalue εk(n) instead
of the interval �εk(n) alone. Accordingly, if εk(n) is contained inside the interval
Dµ ⊆D and if in addition adjacent eigenvalues εk−1(n) and εk+1(n) are contained
in the same interval, we make the following comparison
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ρ a(εk(n))↔W a
k (n)= wa

k (n)

(�εk(n)+�εk+1(n)) /2
, εk−1(n), εk(n), εk+1(n)∈Dµ.

(40)

A special care is required for the eigenvalue εk(n) ∈ Dµ that is adjacent
either to the left or to the right edge of the interval Dµ ⊆ D. If εk(n) is adja-
cent to the left edge of this interval, we calculate W a

k (n) according to W a
k (n)=

wa
k (n)/�εk(n) where the interval �εk(n) is defined as the distance between the

left edge of the interval Dµ and a mean point (εk(n)+ εk+1(n))
/

2. Similarly is
calculated W a

k (n) in the case when εk(n) is adjacent to the right edge of Dµ [12].
We refer to the quantities W a

k (n) as normalized probabilities.
As a first example consider eigenvalue distribution of the state |�〉 shown

in figure 5(b). This distribution is due to the parameter choice A and to the val-
ues E = 0.3 and β = 1.1. It corresponds to the point (◦) in figure 6(a). In figure
8(a) is this distribution shown once more and in figures 8(b–d) it is compared
with results obtained from three finite systems Sn+1. Each system Sn+1 contains
two finite Hückel chains and it is assumed that those chains contain an equal
number of states. For example, in the case n= 10 each Hückel chain contains 5
states. Cases n = 10 (figure 8(b)), n = 40 (figure 8(c)) and n = 160 (figure 8(d))
are considered. Since intervals I1 = [−4,0] and I2 = [1,3] do not overlap, dis-
crete probabilities wa

k (n) and intervals �εk(n) smoothly change with the index k.
Comparison (40) is hence appropriate. In figures 8(b–d) probability density ρ a(ε)

(solid lines) is compared with normalized probabilities W a
k (n) (vertical columns).

Each normalized probability W a
k (n) is situated at the position of the corre-

sponding eigenvalue εk(n). As a quantitative measure of the agreement between
normalized probabilities W a

k (n) and theoretical density ρ a(ε) one can use a stan-
dard deviation �(n)

�(n)=
[∑

εk(n)∈D

(
ρ a(εk(n))−W a

k (n)
)2

n

] 1
2

. (41)

This quantity measures average deviation of normalized probabilities W a
k (n)

from a theoretical density ρ a(ε) at the points where ε=εk(n). One finds �(10)=
0.0051, �(40) = 0.0016 and �(160) = 0.0002. As n increases the agreement
between finite chain result and theoretical density ρ a(ε) rapidly improves and in
a limit n→∞ it is exact. The same applies to the isolated eigenvalue εM ∈ [0,1]
and the corresponding probability wa

M . Using relations (8), (13) and (36b) one
finds εM =0.5775 and wa

M =0.6786. In a finite system Sn+1 to the isolated eigen-
value εM corresponds the eigenvalue εn/2+1(n)∈ [0,1]. If n=10 one finds ε6(10)=
0.5773 and wa

6 (10)=0.6794. With further increase of n those values rapidly con-
verge to the theoretical values εI and wa

I of an infinite system. Thus already for
n = 20 one finds ε11(20) = 0.5775 and wa

11(20) = 0.6786. This agrees up to four
significant figures with εI and wa

I , respectively.
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Figure 8. Eigenvalue distribution of a local state |�〉 for a parameter choice A and for the case E =
0.3 and β = 1.1. This distribution corresponds to the point (◦) in figure 6(a). It is compared with
the results obtained from three selected finite systems Sn+1. Comparison is done using normalized
probabilities W a

k (vertical columns). Each vertical column is situated at the position of the corre-
sponding perturbed eigenvalue εk(n)∈D. In addition, isolated eigenvalue εM and probability wa

M are
compared with corresponding quantities of a finite system Sn+1. (a) Eigenvalue distribution ρ(ε), (b)

comparison for n=10, (c) comparison for n=40, (d) comparison for n=160.

4.2.3. The method of the moving Gaussian window
As another example consider parameter choice B and assume E = 1 and

β =0.9. This example corresponds to the point (◦) in figure 7(a). Since intervals
I1 = [−2,2] and I2 = [−0.5,1.5] partialy overlap and since I2 ⊂ I1, unperturbed
eigenvalues λν(k) ∈ I2 as well as perturbed eigenvalues ε ∈ I2 are degenerate. In
figure 9(a) is shown corresponding eigenvalue distribution ρ(ε) of a local state
|�〉. System S∞ contains no isolated eigenstates and hence ρ(ε) = ρ a(ε) and∫

ρ a(ε)dε = 1. Distribution ρ(ε) is in figure 9(b–d) compared with the normal-
ized probabilities W a

k (n) for three selected finite systems Sn+1. In the intervals
[−2,−0.5] and [1.5, 2] where unperturbed eigenvalues λν(k) are nondegenerate,
the agreement between probability density ρ a(ε) and normalized probabilities
W a

k (n) improves with the increase of n. However, in the interval I2 = [−0.5,1.5]
normalized probabilities W a

k (n) considered as a function of k are strongly irreg-
ular and the agreement of those probabilities with density ρ a(ε) is not so good.
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Figure 9. Eigenvalue distribution of a local state |�〉 for a parameter choice B and for the case E =
1 and β =0.9. This distribution corresponds to the point (◦) in figure 7(a). It is compared with the
results obtained from three selected finite systems Sn+1. Comparison is done using normalized prob-
abilities W a

k (vertical columns). Each vertical column is situated at the position of the correspond-
ing perturbed eigenvalue εk(n)∈D. (a) Eigenvalue distribution ρ(ε), (b) comparison for n=10, (c)

comparison for n=40, (d) comparison for n=160.

In particular, one finds �(10)=0.179, �(40)=0.160 and �(160)=0.154. Those
standard deviations do not converge to zero as n→∞. This is due to the fact
that in the interval I2 neither eigenvalues εk(n) nor probabilities wa

k (n) change
smoothly with index k. As a consequence expression (40) fails. The failure of
this expression under such conditions is understandable. Consider for example
extreme possibility εk−1(n)=εk(n)=εk+1(n). In this case expression (40) produces
absurd value W a

k (n)=∞. A more subtle method is required in this and similar
cases in order to compare eigenvalues εk(n)∈D and corresponding probabilities
wa

k (n) with density ρ a(ε). We will now describe the method of a moving Gauss-
ian window. This method works in all cases.

An ideal measurement (performed with an infinite precision) of an eigen-
value εk(n) with the probability wa

k (n) is represented by the function wa
k (n)δ(ε−

εk(n)). This is a δ-like function situated at the position ε = εk(n) and with an
area wa

k (n). However, each real measurement of an eigenvalue can be performed
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only with a finite precision � > 0. This finite precision represents a finite reso-
lution of the measurement process. In order to represent such a measurement
one has to replace δ-function δ(ε−εk(n)) with some function g(ε−εk(n),�) that
has a finite width �. Function g(ε,�) should be centered at ε =0, it should be
relatively smooth with a finite width �, and it should be normalized to unity,∫

g(ε,�)dε = 1. For the intended purpose exact form of this function is not
essential, and it is convenient to choose a Gaussian

g(ε,�)= 1
�

√
π

e−( ε
� )

2

,

∫

g(ε,�)dε =1. (42a)

We will refer to this function as a Gaussian window. Function wa
k (n)g(ε −

εk(n),�) represents a measurement of the eigenvalue εk(n) with the finite resolu-
tion �. If instead of a single eigenvalue one considers a finite system Sn+1 with
several discrete eigenvalues εk(n)∈D and the corresponding probabilities wa

k (n),
such a measurement will produce the value ε with the probability density

ρ a
n (ε,�)=

∑

εk(n)∈D

wa
k (n)g (ε − εk(n),�). (42b)

From the summation in (42b) eigenvalues εk(n)∈–D are excluded. Those ei-
genvalues correspond to isolated eigenvalues εI of S∞ and they should be treated
separately. Note that due to (42a) one has

∫

ρ a
n (ε,�)dε =

∑

εk(n)∈D

wa
k (n). (42c)

In particular, if the finite system Sn+1 contains no eigenvalues outside the
range D, one has

∫
ρ a

n (ε,�)dε =1.
Probability density ρ a

n (ε,�) represents a finite-precision measurement per-
formed with the resolution � on a finite system Sn+1. This density should be
compared with probability density ρ a(ε) of the infinite system S∞. In analogy
to (41) the agreement between ρ a

n (ε,�) and ρ a(ε) can be estimated with a stan-
dard deviation

�ρ a
n (�)=

√∫
(
ρ a

n (ε,�)−ρ a(ε)
)2

dε. (43)

In a limit n→∞ densities ρ a
n (ε,�) should converge to ρ a(ε) and standard

deviation �ρ a
n (�) should converge to zero. Since each density ρ a

n (ε,�) depends
on the resolution �, this limit should be performed in a particular way. If � is
bigger than the average separation �εk(n) between adjacent eigenvalues εk(n)∈D

of a finite system Sn+1, density ρ a
n (ε,�) will be relatively smooth function of ε.

However, large � means small resolution of the measurement process and hence
if ���εr(n) density ρ a

n (ε,�) will not be a very good approximation of ρ a(ε).
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This can be improved by decreasing � which should increase resolution and
decrease standard deviation �ρ a

n (�). However, if the width � is much smaller
than maximum separation between adjacent eigenvalues εk(n)∈D and especially
if it is much smaller than average separation �εk(n) between those eigenvalues,
there is another problem. In this case discrete character of separate eigenvalues
εk(n) becomes manifest, and density ρ a

n (ε,�) considered as a function of ε var-
ies quite strongly from one eigenvalue εk(n) to another. As a consequence, stan-
dard deviation �ρ a

n (�) is again large. Between those two extremes there is an
optimum resolution � ≡ �0(n) which minimizes �ρ a

n (�). This minimum value
equals �ρa0

n ≡�ρ a
n (�0(n)). We will denote the corresponding density distribution

as ρa0
n (ε)≡ρ a

n (ε,�0(n)).
According to the above analyze, optimum resolution �0(n) is of the order

of the average separation �εk(n) between two adjacent eigenvalues εk(n)∈D of
Sn+1, but it is also quite sensitive on the maximum separation between those
adjacent eigenvalues. With the increase of n average separation �εk(n) as well
as maximum separation between adjacent eigenvalues decreases. Hence �0(n)

decreases with the increase of n, and in a limit n → ∞ it converges to zero.
Experimentally, this final goal (�0 =0) can never be achieved.

In figures 10 and 11 eigenvalue distribution shown in figure 9 is reconsidered
using above Gaussian window method. In figure 10 are shown standard deviations
�ρ a

n (�) as functions of � for five selected values of n. For each n there is an
optimum resolution �=�0(n) such that this standard deviation has a minimum
�ρa0

n . One finds �0(10) = 0.193, �0(20) = 0.121, �0(40) = 0.087, �0(80) = 0.062
and �0(160)=0.038. As required, those values decrease with the increase of n and
in a limit n→∞ they converge to zero. Corresponding standard deviations �ρa0

n

are �ρa0
10 =0.351, �ρa0

20 =0.200, �ρa0
40 =0.111, �ρa0

80 =0.059 and �ρa0
160 =0.025. As

n increases, those values also converge to zero.
In figure 11 is compared exact density ρ a(ε) (solid lines) with optimum

finite chain densities ρa0
n (ε) (dashed lines) for three selected values of n. If n

is as low as n = 10, optimum width �0(10) = 0.193 of the Gaussian window is
relatively large. Standard deviation �ρa0

10 = 0.351 is hence also relatively large,
and density ρa0

10 (ε) is relatively pure approximation of ρ a(ε) (figure 11(b)). If
n increases to n = 40, optimum width of the Gaussian window decreases to
�0(40)=0.087. In this case resolution is much better, one finds �ρa0

40 =0.111 and
the agreement between ρa0

40 (ε) and ρ a(ε) substantially improves (figure 11(c)).
Finally if n increases to n = 160, optimum width of the Gaussian window
decreases to �0(160) = 0.038, one finds �ρa0

160 = 0.025 and finite chains density
ρa0

160(ε) is almost identical to the exact density ρ a(ε) (figure 11(d)).
Another example treating parameter choice B with the value E =1 is shown

in figure 12. In this example the coupling β is as strong as β =1.5. This choice of
parameters corresponds to the point (•) in figure 7(a). Eigenvalue distribution of
the state |�〉 for this case is shown in figure 12(a). This eigenvalue distribution
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Figure 10. The method of the moving Gaussian window. Standard deviations �ρ a
n (�) are plotted

as functions of the resolution � for the system considered in figure 9. This is done for five selected
finite systems Sn+1. Cases n=10, n=20, n=40, n=80 and n=160 are considered.

Figure 11. System analyzed in figure 9 by the method of normalized probabilities reconsidered
by the method of the moving Gaussian window. Density distribution ρ a(ε) (solid lines) is com-
pared with optimum finite system density distributions ρa0

n (ε) (dashed lines). (a) Density distribu-
tion ρ a(ε), (b) comparison for n=10, (c) comparison for n=40, (d) comparison for n=160.
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contains right isolated eigenvalue εR with the probability wa
R in addition to the

density ρ a(ε). One finds εR = 2.3189, wa
R = 0.5024 and wa

D = 0.4976. In accord
with the completeness requirement one has wa

R +wa
D =1. In figures 12(b–d) this

eigenvalue distribution is compared with results obtained from selected finite sys-
tems in a standard way. In particular, density ρ a(ε) is compared with optimum
densities ρa0

n (ε), while isolated eigenvalue εR and the corresponding probability
wa

R are compared with related values εn+1(n) and wa
n+1(n), respectively. If n is

as low as n=10, optimum width �0(10)=0.447 of the Gaussian window is rel-
atively large and one has �ρa0

10 = 0.062. In this case one finds ε11(10) = 2.3180
and wa

11(10)=0.5055. This is in relatively good agreement with exact values εR =
2.3189 and wa

R =0.5024. However, finite chain density ρa0
10 (ε) is not such a good

approximation of the exact density ρ a(ε) (see figure 12(b)). If n increases to n=
40, optimum width of the Gaussian window decreases to �0(40)= 0.149, while
standard deviation decreases to �ρa0

40 = 0.021. The agreement between ρao
40 (ε)

Figure 12. Gaussian window method applied to the system containing an isolated eigenstate. Den-
sity distribution ρ a(ε) (solid lines) is compared with optimum finite system density distributions
ρa0

n (ε) (dashed lines). In addition, isolated eigenvalue εR and the corresponding probability wa
R are

compared with related finite system quantities εk(n) and wa
k (n) (vertical columns). (a) Eigenvalue

distribution ρ(ε) for the parameter choice B and for the values E = 1 and β = 1.5. This distri-
bution corresponds to the point (•) in figure 7(a). (b) comparison for n = 10, (c) comparison for

n=40, (d) comparison for n=160.
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and ρ a(ε) substantially improves. One also finds ε41(40)=2.3189 and wa
41(40)=

0.5024 which agrees up to all four significant figures with theoretical values for
εR and wa

R (figure 12(c)). Finally, if n increases to n = 160, optimum width of
the Gaussian window decreases to �0(160)=0.048 and one finds �ρa0

160 =0.005.
Finite chain density ρa0

160(ε) is in an excellent agreement with the density ρ a(ε)

(figure 12(d)).
Above examples illustrate general behavior of the density ρ a(ε) and finite

chain densities ρa0
n (ε). As n increases those finite chain densities converge to the

infinite chain density ρ a(ε) and one has limn→∞ ρa0
n (ε)=ρ a(ε).

Above examples illustrate the suggested method in the case when the system
Sb
∞ represents the set of κ =2 infinite Hückel chains and when the local state |�〉

interacts only with the first site of those chains. There is nothing special about
this choice. The suggested method is rather general and it applies to an arbitrary
system Sb

∞ that contains a finite number of one-parameter eigenvalue bands. The
interaction between the local state |�〉 and this system can be of any kind.

5. Conclusion

Exact treatment of the interaction of an isolated state |�〉 with the known
infinite dimensional quantum system Sb

∞ is generalized to the case when the sys-
tem Sb

∞ contains a finite number of one-parameter eigenvalue bands. Formally,
this requires the solution of the combined system S∞ =Sa

1 ⊕Sb
∞ where Sa

1 is one-
dimensional system containing a single state |�〉 with the eigenvalue E. In the
original treatment of this problem, the system Sb

∞ was assumed to contain a
single one-parameter eigenvalue band [1]. Each eigenstate |�(k)〉 of such a sys-
tem is nondegenerate. This assumption is rather restrictive and there are very
few infinite quantum systems with such a property. In particular, electromagnetic
field forms a degenerate eigenvalue band and the same applies to the eigenvalues
and eigenstates of a three-dimensional solid. Since an arbitrary (multiparameter)
eigenvalue band can be approximated to any desired degree of accuracy with a
finite number of one-parameter eigenvalue bands, generalization presented in this
paper is crucial in order to describe in a closed form interaction of a single state
with an arbitrary infinite dimensional quantum system [7].

It is shown that combined system S∞ contains embedded eigenstates |�ν(ε)〉
with continuous eigenvalues ε∈D, where D is a range containing all eigenvalues
of the unperturbed infinite system Sb

∞. This range may contain one or several
nonoverlapping intervals. In addition to embedded eigenvalues and eigenstates,
combined system may contain isolated eigenstates |�I 〉 with discrete eigenvalues
εI /∈D.

Closed expressions for the embedded and isolated solutions of the com-
bined system are derived. Unlike standard perturbation expansion approach,
those expressions involve no approximation, and they apply to each coupling of
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the system Sa
1 with the system Sb

∞, however strong. In particular, closed expres-
sions for the spectral (eigenvalue) distribution of the state |�〉 that interacts with
the infinite quantum system Sb

∞ are obtained.
The method is illustrated with a simple model describing the interaction of

a single state |�〉 (system Sa
1 ) with several infinite one-dimensional solids in the

nearest-neighbor tight-binding approximation (system Sb
∞). This model is suffi-

ciently complex in order to illustrate and verify all derived expressions. In par-
ticular, key completeness relation is verified. This relation is verified with several
examples involving an extremely large interval of coupling constants. In addition,
the interaction of the system Sa

1 with finite one-dimensional solids that contains
n atoms (system Sb

n ) is considered. Since the corresponding combined system
Sn+1 =Sa

1 ⊕Sb
n is finite-dimensional, it can be solved by standard diagonalization

methods. In this way one can compare all results that apply to an infinite sys-
tem S∞ (obtained using expressions derived in this paper) with corresponding
results for finite system Sn+1 (obtained independently in the standard way). As
n increases, the results for the system Sn+1 are shown to converge to the cor-
responding results for the system S∞. This provides a direct verification of the
suggested method. For the sake of simplicity, in the numerical examples only the
case when the system Sb

n contains two infinite chains is considered. This does not
present any restriction on the general validity of derived expressions.

Obtained results and their generalization [7,8] can be applied to all cases
where one considers an isolated state |�〉 in the interaction with an infinite quan-
tum system Sb

∞. This includes, among others, a general problem of the interac-
tion of an isolated molecular state with electromagnetic field. Investigation of
such an interaction is a main problem of spectroscopy. Another example is the
interaction of an isolated molecular state of a molecule situated on a surface of
some solid with this solid. Investigation of such an interaction is a main prob-
lem of the surface state physics. In the present paper time-independent properties
of the state |�〉 that interacts with the infinite system Sb

∞ are considered. Time-
dependent properties are considered in the following paper [6].

From the mathematical and conceptual point of view, the main result of
the present paper is the generalization of the notion of the fractional shift to
the case when the system Sb

∞ contains a finite number of one-parameter eigen-
value bands. This generalization is a precondition of the final generalization to
arbitrary infinite dimensional systems Sb

∞ [7]. In the suggested method fractional
shift is a key quantity for the derivation of many properties of the combined sys-
tem S∞. It is therefore highly important that the notion of the fractional shift
can be unambiguously defined for arbitrary quantum systems.
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Appendix A

A.1. System S∞ as the n→∞ limit of finite dimensional systems Sn+1

In order to solve eigenvalue equation (3), we approximate infinite dimen-
sional system S∞ ≡ Sa

1 ⊕ Sb
∞ with a finite dimensional system Sn+1 ≡ Sa

1 ⊕ Sb
n con-

taining n+1 eigenvalues. This can be done by first replacing unperturbed infinite
system Sb

∞ with n-dimensional system Sb
n . Next one introduces the interaction

between the systems Sa
1 and Sb

n . The solution to the finite dimensional combined
system Sn+1 can be obtained in the closed form [13]. One has to derive an appro-
priate n→∞ limit of this solution. Provided this limit is well defined, it repre-
sents the solution to the system S∞.

Let Sb
n be n-dimensional system described by the eigenvalue equation

B
∣
∣�ν,i

〉=λν,i

∣
∣�ν,i

〉
, i =1, . . . ,mν, ν =1, . . . , κ, (A.1a)

where
κ∑

ν

mν =n. (A.1b)

The eigenstates
∣
∣�ν,i

〉
of this system can be orthonormalized according to
〈
�ν,i

∣
∣�µ,j

〉= δij δνµ. (A.1c)

System Sb
n thus defined is a union of κ subsystems Sbν

mν
(ν =1, . . . , κ).

Let the system Sb
n interact with the one-dimensional system Sa

1 that contains
a single eigenstate |�〉 with the eigenvalue E. This system is described by the
eigenvalue equation (1). An arbitrary interaction between Sa

1 and Sb
n can be writ-

ten in the form βV where V is a Hermitian operator fully described by matrix
elements

〈
�
∣
∣V
∣
∣�ν,i

〉
and where β is a coupling parameter. Combined system

Sn+1 may have cardinal eigenvalues εk /∈{λν,i

}
as well as singular eigenvalues εk ∈{

λν,i

}
[13]. One finds that εk /∈ {λν,i

}
is a (cardinal) eigenvalue of the combined

system if and only if it is a root of the function hn(ε) [13]:

hn(εk)≡β2�(εk)+E − εk =0, (A.2a)

where

�(ε)=
κ∑

ν

mν∑

i

〈
�
∣
∣V
∣
∣�ν,i

〉 〈
�ν,i

∣
∣V |� 〉

ε −λν,i

. (A.2b)

We use index n in order to emphasize that function hn(ε) refers to a com-
bined system Sn+1 containing n+1 eigenvalues.

Each cardinal eigenvalue εk /∈ {λν,i

}
of Sn+1 is nondegenerate and the

corresponding normalized eigenstate is [13]
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|�k〉= 1√
Qk

[

|�〉+β

κ∑

ν=1

mν∑

i=1

〈
�ν,i

∣
∣V |� 〉

εk −λν,i

∣
∣�ν,i

〉
]

, (A.3a)

where

Qk =1+β2
κ∑

ν=1

mν∑

i=1

∣
∣
〈
�ν,i

∣
∣V |� 〉∣∣2

(
εk −λν,i

)2 . (A.3b)

Further, if λj ≡λν,i are unperturbed eigenvalues of Sb
n arranged in the non-

decreasing order and if εk are perturbed eigenvalues (cardinal as well as singular)
of Sn+1 arranged in the nondecreasing order, those eigenvalues satisfy the inter-
lacing rule [13]

ε1 �λ1 � ε2 �λ2 � · · ·�λn � εn+1. (A.4a)

In addition, if all unperturbed eigenvalues λj are nondegenerate and if all
matrix elements

〈
�
∣
∣V
∣
∣�ν,i

〉
are nonzero, then the system Sn+1 contains no singu-

lar solutions. In this case relations (A2)–(A3) produce all solutions of this system
and interlacing rule (A4a) contains only strict inequalities

ε1 <λ1 <ε2 <λ2 < · · ·<λn <εn+1. (A.4b)

One can form an infinite sequence of finite dimensional systems Sn+1 in
such a way that each system Sn+1 contains only cardinal solutions and that in
a limit n→∞ those systems converge to S∞. The solution to S∞ can be hence
obtained as the n→∞ limit of the solutions to those intermediate systems. Since
each Sn+1 contains only cardinal solutions, relations (A2) and (A3) are sufficient
to obtain all solutions to Sn+1. However, though none of those intermediate sys-
tems contains a singular solution, n→∞ limit of those systems (system S∞) may
contain singular solutions [1]. Accordingly, with due caution one can in this way
obtain all solutions of the combined system S∞, cardinal as well as singular.

A.2. Eigenvalues and eigenstates of S∞

In order for the system Sb
n to approximate infinite system Sb

∞, each subsys-
tem Sbν

mν
of Sb

n should approximate corresponding subsystem Sbν
∞ of Sb

∞. In par-
ticular, for each ν in a limit mν →∞ eigenvalues λν,i (i = 1, . . . ,mν) should be
dense in the interval Iν = [aν, bν ] ⊆ D. Hence in a limit n → ∞ eigenvalues λν,i

of Sb
n are dense in the range D. In addition, since no eigenvalue of Sb

∞ is con-
tained in the point set –D, no eigenvalue λν,i of Sb

n can be contained in –D. Due to
the interlacing rule, eigenvalues εk of the combined system Sn+1 are also dense in
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each interval Iν . Hence, in a limit n→∞ each ε ∈D ≡∪Iν is a perturbed eigen-
value. By definition, this is an embedded eigenvalue of the combined system S∞
[1]. This eigenvalue is part of a continuous band of eigenvalues, and the corre-
sponding eigenstates can be written as

∣
∣�µ(ε)

〉
where discrete index µ labels pos-

sible degeneracy of those eigenstates. Those eigenstates can be orthonormalized
according to

〈
�µ(ε)

∣
∣�µ′(ε′)

〉= δµµ′δ(ε − ε′).

This is similar to the orthonormalization (2b) of the unperturbed eigen-
states |�ν(k)〉.

In addition to the embedded eigenvalues ε ∈ D, system S∞ may contain
some eigenvalues εI ∈ –D outside the range D. Due to the interlacing rule (A.4),
in each interval I ⊆–D one can have at most one eigenvalue εI ∈–D. By definition,
eigenvalue εI ∈–D and the corresponding eigenstate |�I 〉 is an isolated eigenvalue
and eigenstate, respectively. Since each εI is discrete, eigenstates |�I 〉 can be nor-
malized to unity. In this respect isolated eigenstates |�I 〉 are similar to the local
state |�〉∈Xa

1 that is also normalized to unity.

A.3. Isolated eigenvalues and eigenstates

In the case of isolated eigenvalues (εI ∈–D) it is relatively easy to obtain the
n → ∞ limit of relations (A.2) and (A.3). In particular, summation over i in
(A.2b) is replaced with an integral, and one finds [1]

�(ε)→ω(ε)=
∑

ν

kbν∫

kaν

〈� |V |�ν(k)〉 〈�ν(k) |V |�〉
ε −λν(k)

dk, ε ∈ –D.

Using expressions (4) this translates into relations (5). Hence and from (A2)
one derives (8). In a similar way one derives all remaining relations concerning
isolated eigenvalues and eigenstates. As implied by the interlacing rule, each iso-
lated eigenstate is nondegenerate.

A.4. Embedded eigenvalues and eigenstates

In the case of the embedded eigenvalues ε∈D of the combined system S∞,
transition to the limit n→∞ of the relations (A.2) and (A.3) is more complex.
Derivation of the correct n → ∞ limit is complicated by the fact that infini-
tesimally close to each embedded eigenvalue ε ∈ D there is an infinite number
of unperturbed eigenvalues λ∈D. This limit was originally derived for the case
when the system Sb

∞ contains a single one-parameter eigenvalue band λ(k) [1].
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In this case each state |�(k)〉 is a nondegenerate eigenstate of the unperturbed
system Sb

∞. We will generalize this result to the case when Sb
∞ contains several

one-parameter eigenvalue bands λν(k) (ν =1, . . . , κ).

A.4.1. Fractional shift
Key quantity in the treatment of embedded eigenstates is fractional shift

x(ε) [1]. Let us first consider this quantity in the case when the system Sb
∞ con-

tains a single one-parameter eigenvalue band [1].

(a) case κ =1:
If κ =1 eigenvalue equation (2a) reduces to [1]

B |�(k)〉=λ(k) |�(k)〉 , k ∈ [ka, kb] . (A.5)

Let λ(k) be monotonic increasing function of k. In this case all eigen-
values of the unperturbed system Sb

∞ are contained in the interval D = [a, b]
where a = λ(ka) and b = λ(kb). Partition the interval [ka, kb] into n subin-
tervals of equal length �k = (kb −ka) /n. Midpoints of those subintervals are
ki = ka + (i −1/2) �k (i = 1, . . . , n). Next replace continuous functions λ(k)

and 〈� |V |�(k)〉 with n discrete values sampled at those midpoints. Function
λ(k) is replaced with n discrete values λi ≡ λ(ki) (i = 1, . . . , n), while function
〈� |V |�(k)〉 is replaced with n discrete values 〈� |V |�i 〉 according to [1]

〈� |V |�i 〉=〈� |V |�(ki)〉
√

�k, i =1, . . . , n. (A.6)

Proportionality constant (
√

�k) follows from the normalization condition
∫

|�(k)〉 〈�(k)|dk ⇔
∑

i

|�i〉 〈�i |.

The above procedure approximates infinite-dimensional system S∞ =Sa
1 ⊕Sb

∞
where Sb

∞ contains one-parameter eigenvalue band λ(k) with (n+1)-dimensional
system Sn+1 ≡ Sa

1 ⊕ Sb
n . As n increases, this approximation improves and in a

limit n→∞ it is exact. Since λ(k) is monotonic increasing function of k, eigen-
values λi ≡ λ(ki) are nondegenerate. In addition, without loss of generality one
can assume 〈� |V |�i 〉 	=0 (i =1, . . . , n) [1]. According to the interlacing rule this
implies λk−1 <εk <λk and each perturbed eigenvalue εk of the combined system
is cardinal. Relations (A.2) and (A.3) are hence sufficient to provide all solutions
to the combined system Sn+1.

Let εk ∈D be an interior point of a range D. Using (A2.b) and (A.6) and
assuming κ =1 one can express quantity �(εk) as a sum of two components [1]

�(εk)=�(0)(εk)+�(1)(εk), (A.7a)
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where

�(0)(εk)=
N(n)∑

j=−N(n)

〈
�
∣
∣V
∣
∣�(kk+j )

〉 〈
�(kk+j )

∣
∣V |� 〉

εk −λ(kk+j )
�k, (A.7b)

�(1)(εk) =
∑

j<−N(n)

〈
�
∣
∣V
∣
∣�(kk+j )

〉 〈
�(kk+j )

∣
∣V |� 〉

εk −λ(kk+j )
�k

+
∑

j>N(n)

〈
�
∣
∣V
∣
∣�(kk+j )

〉 〈
�(kk+j )

∣
∣V |� 〉

εk −λ(kk+j )
�k, (A.7c)

and where N(n)=⌊n1/3
⌋

is the largest integer smaller than n1/3.
Since εk ∈ (λk−1, λk) component �(0)(εk) contains contributions to �(εk)

from approximately 2n1/3 eigenvalues λi ≡λ(ki) that are close to εk, while compo-
nent �(1)(εk) contains all remaining contributions. In a limit n→∞ component
�(1)(εk) converges to [1]

�(1)(εk)→ω(ε)=P

∫ kb

ka

〈� |V |�(k)〉 〈�(k) |V |�〉
ε −λ(k)

dk, (A.8)

where P denotes principal Cauchy integral value. Using definition (4) this can be
expressed as (5d).

Concerning component �(0)(εk), one can expand functions λ(k) and
〈� |V |�(k)〉 in the point k =kk ∈ [ka, kb] to obtain [1]

λk+j =λk + (dλ/dk)k (�k)j +O(j 2/n2), (A.9a)

〈
�
∣
∣V
∣
∣�(kk+j )

〉=〈� |V |�(kk)〉+O(j/n), (A.9b)

where (dλ/dk)k is a derivative of a function λ(k) taken in a point k = kk and
where O(x) is a small quantity of the order x. Since the summation in (A.7b)
is confined to |j |�N(n)≈ n1/3 and since �k is of the order O(n−1), in a limit
n→∞ small quantities O(x) in (A.9) can be neglected [1]. In particular, in this
limit eigenvalues λk+j are equidistant with the interval

�λk+j = λk+j −λk+j−1 = (dλ/dk)k �k +O(j 2/n2)

≈ (dλ
/

dk
)
k
�k, j ∈ [−n1/3, n1/3] , (A.9c)

while matrix elements
〈
�
∣
∣V
∣
∣�(kk+j )

〉≈ 〈� |V |�(kk)
〉

are constant.
Hence and from the identity [14]

1
x

+
∞∑

j=1

(
1

x − j
+ 1

x + j

)

=π cot(πx). (A.10)
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one finds [1]

�(0)(εk)≈π
〈� |V |�(kk)〉 〈�(kk) |V |�〉

(dλ/dk)k
cot (πx(εk)) , (A.11a)

where

x(εk)= εk −λk−1

λk −λk−1
, k =2, . . . , n. (A.11b)

Quantity x(εk) is a fractional shift of the perturbed eigenvalue εk ∈(λk−1, λk)

relative to the unperturbed eigenvalue λk−1. Due to the interlacing rule and since
the system Sn+1 contains no singular eigenvalues, this quantity satisfies

0<x(εk)<1. (A.11c)

In a limit n→∞ arguments εk of x(εk) become dense in the interval [a, b]
and according to (A.11c) fractional shift x(ε) may have any value in the interval
[0,1]. Also in this limit one has

〈� |V |�(kk)〉 〈�(kk) |V |�〉
(dλ/dk)k

→ 〈� |V |�(k)〉 〈�(k) |V |�〉
dλ
/

dk

∣
∣
∣
∣
∣
ε=λ(k)

≡f (ε).

(A.12)

Combining above expressions one finds that in the case ε = εk ∈D relation
(A.2a) can be approximated as hn(εk)≈β2 [ω(εk)+πf (εk) cot (πx(εk))]+E −εk =
0. As n increases this approximation improves and in a limit n→∞ it is exact.
This shows that in this limit fractional shifts x(εk) (k = 2, . . . , n) converge to a
function x(ε) given by the relation (17a).

In the above derivation of the fractional shift correct treatment of the com-
ponent �(0)(εk) is essential. Crucial point in the evaluation of this component is
the transition from the expression (A.7b) to the expression (A.11a). This transi-
tion is possible due to the properties (A.9) of discrete eigenvalues λi and discrete
matrix elements 〈� |V |�(ki)〉. Neglecting terms of the order O(j/n), matrix
elements

〈
�
∣
∣V
∣
∣�(kk+j )

〉
are constant over the interval j ∈ [−n1/3, n1/3

]
. Hence

one can factor out constant term
∣
∣
〈
�
∣
∣V
∣
∣�(kk+j )

〉∣
∣2 �k ≈ |〈� |V |�(kk)〉|2 �k =

|〈� |V |�k 〉|2 under the summation sign in (A.7b). Next and according to (A.9c),
neglecting terms of the order O(j 2/n2), unperturbed eigenvalues λk+j are equi-
distant over this interval. Using (A.10) one can sum remaining terms in (A.7b).
One thus obtains expression (A.11a) for the quantity �(0)(εk). In a limit n→∞
this expression is exact.

In order to generalize the notion of fractional shift to the case of multiple
eigenvalue bands, the above two properties of discrete eigenvalues λi and dis-
crete matrix elements 〈� |V |�i 〉 should be retained. Hence finite systems Sn+1

that approximate the system S∞ should satisfy following two properties:
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(i) Let In = [an, bn] ⊂ D be an interval containing O(n1/3) unperturbed ei-
genvalues λi . Interval In depends on n, and as n increases dimension
dn =bn −an of this interval decreases. Neglecting higher order terms, ei-
genvalues λi contained in this interval should be equidistant.

(ii) Under the same conditions, matrix elements 〈� |V |�i 〉 should be con-
stant over this interval.

A more detailed analysis shows that it is not necessary for each interval
In ⊂ D containing O(n1/3) unperturbed eigenvalues to satisfy above two condi-
tions. Range D may contain some isolated points ε0 ∈D such that if ε0 ∈ I , this
interval does not satisfy above conditions. This is acceptable, as long as there is
a finite number of such points. Points that can violate properties (i) and (ii) are
usually end points aν and bν of intervals Iν .

Let us now generalize fractional shift to the next more complicated case:
(b) case λ1(k)=λ2(k)=· · ·=λκ(k):

In this case system Sb
∞ contains κ one-parameter eigenvalue bands with the

same eigenvalue function λ(k) ≡ λν(k) (ν = 1, . . . , κ). This can be considered as
a single κ-degenerate eigenvalue band. Formally, this is a two-parameter eigen-
value band containing a continuous parameter k and a discrete parameter ν. In
this case eigenvalue equation (2a) reduces to

B |�ν(k)〉=λ(k) |�ν(k)〉 , k ∈ [ka, kb] , ν =1, . . . , κ. (A.13)

Eigenvalues of the unperturbed system are again contained in the single
interval D= [a, b] where a=λ(ka) and b=λ(kb). However, this time each λ(k)∈D

is κ-degenerate.
Let n be a multiple of κ, i.e. let n = mκ where m is an integer. In anal-

ogy to the case κ = 1, partition the interval [ka, kb] into m = n/κ subintervals
of equal length �k = (kb −ka) /m. In addition, partition each of those subin-
tervals into κ smaller subintervals of length � = (kb − ka)/n = �k/κ. One thus
obtains n subintervals of equal length �. Midpoints of those subintervals are
kν,i =ka + [(i −1)κ + (ν −1/2)]� (i =1, . . . ,m; ν =1, . . . , κ). Double indices (ν, i)

can be replaced with a single index l = (i −1)κ +ν (l =1, . . . , n). With this index-
ing convention one has kν,i ≡kl =ka + (l −1/2)� (l=1, . . . , n). Next approximate
function λ(k) with n values λl ≡ λ(kl) sampled at those n points. Since λ(k) is
monotonic increasing function of k, unperturbed eigenvalues λl are nondegener-
ate. In addition, those eigenvalues satisfy relations (A.9) In particular one has

�λk+l = (dλ/dk)k �+O(l2n−2)≈ (dλ
/

dk
)
k
�, l ∈�−n1/3, n1/3�,

where k ≡ (µ, i) and l = (ν, j) are subject to the above indexing convention with
an appropriate summation (k+ l). In a limit n→∞ unperturbed eigenvalues λk+l

are equidistant in accord with the requirement (i).
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Consider now matrix elements 〈� |V |�ν(k)〉. In analogy to (A.6) one may
try to replace functions 〈� |V |�ν(k)〉 with n discrete values

〈
�
∣
∣V
∣
∣�ν,i

〉
accord-

ing to
〈
�
∣
∣V
∣
∣�ν,i

〉= 〈� ∣∣V ∣∣�ν(kν,i)
〉√

�k, i =1, . . . ,mν, ν =1, . . . , κ, (A.6′)

where proportionality constant (
√

�k) is due to the requirement
∫

|�ν(k)〉 〈�ν(k)|dk ⇔
∑

i

∣
∣�ν,i

〉 〈
�ν,i

∣
∣, ν =1, . . . , κ.

If µ 	= ν one usually has 〈� |V |�ν(k)〉 	= 〈� ∣∣V ∣∣�µ(k)
〉
. Hence matrix element

〈� |V |�l 〉 ≡ 〈� ∣∣V ∣∣�ν,i

〉
may be quite different from adjacent matrix elements

〈� |V |�l±1 〉 and straightforward sampling of those matrix elements in the points
k=kl violates condition (ii). However, for each k∈ [ka, kb] unperturbed eigenstates
|�ν(k)〉 (ν = 1, . . . , κ) are κ-degenerate, and one can use any set of κ orthonor-
malized eigenstates

∣
∣�′

ν(k)
〉

that are linear combinations of initial unperturbed
eigenstates |�ν(k)〉, instead of those initial eigenstates. One can exploit this flex-
ibility in order to satisfy condition (ii).

Without loss of generality one can assume that matrix elements aν ≡
〈� |V |�ν(k)〉 (ν = 1, . . . , κ) are real and nonnegative. If this is not the case, it
can be accomplished by simple adjustment of the phases of eigenstates |�ν(k)〉.

Consider transformed eigenstates

∣
∣�′

ν(k)
〉=

κ∑

µ

Oνµ(k)
∣
∣�µ(k)

〉
, ν =1, . . . , κ, (A.14)

where O is an orthogonal matrix with matrix elements Oµν . Since O is orthog-
onal and since initial eigenstates |�ν(k)〉 are orthonormalized, transformed ei-
genstates

∣
∣�′

ν(k)
〉

are also orthonormalized. Choose matrix O in such a way that
those eigenstates satisfy

〈
�
∣
∣V
∣
∣�′

ν(k)
〉=g(k), ν =1, . . . , κ, (A.15)

where g(k) is a real continuous function of k that does not depend on ν. In
section (d) we will show that such a choice is always possible. Let X(k) be κ-
dimensional space corresponding to the eigenvalue λ(k). This space is spanned
by original eigenstates |�ν(k)〉 as well as by transformed eigenstates

∣
∣�′

ν(k)
〉
. Pro-

jection operator P(k) on this space can be expressed in terms of the eigenstates
|�ν(k)〉 as well as in terms of the eigenstates

∣
∣�′

ν(k)
〉
:

P(k)=
κ∑

ν

|�ν(k)〉 〈�ν(k)|=
κ∑

ν

∣
∣�′

ν(k)
〉 〈

�′
ν(k)

∣
∣. (A.16)
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Hence and from (A.15)

g(k)=
[

1
κ

κ∑

ν

〈� |V |�ν(k)〉 〈�ν(k) |V |�〉
]1/2

, (A.17a)

One can write this expression in a compact form

g(k)=
[

1
κ

〈� |VP(k)V |�〉
]1/2

. (A.17b)

Since matrix elements 〈� |V |�ν(k)〉 are by assumption continuous in the
interval [ka, kb], relation (A.17a) implies that function g(k) is also continuous in
this interval. Hence, one can sample matrix elements

〈
�
∣
∣V
∣
∣�′

ν(k)
〉

in the points
kl in such a way that the condition (ii) is satisfied. In particular, one can replace
functions

〈
�
∣
∣V
∣
∣�′

ν(k)
〉

with n discrete values sampled at n points kl according
to

〈
�
∣
∣V
∣
∣�′

ν,i

〉= 〈� ∣∣V ∣∣�′
ν(kν,i)

〉√
�k =g(kν,i)

√
�k, (ν, i)≡ l =1, . . . , n.

(A.6′′)

Since g(k) is continuous, one finds in analogy to (A.9b)
〈
�
∣
∣V
∣
∣�′

k+l

〉≈ 〈� ∣∣V ∣∣�′
k

〉
, l ∈�−n1/3, n1/3�.

Requirement (ii) is now satisfied. One can again express �(εk)≡�(εµ,j ) as
a sum of components �(0)(εk) and �(1)(εk). In analogy to (A.8) and (A.11) one
finds

�(1)(εk)→ω(ε)=κP

∫ 〈
�
∣
∣V
∣
∣�′

µ(k)
〉 〈

�′
µ(k)

∣
∣V |� 〉

ε −λ(k)
dk,

�(0)(εk)≈κπ

〈
�
∣
∣V
∣
∣�′

µ(kk)
〉 〈

�′
µ(kk)

∣
∣V |� 〉

(dλ/dk)k
cot (πx(εk)) .

Using identity (A.16) one can express those quantities in terms of the orig-
inal unperturbed eigenstates |�ν(k)〉. Hence

�(1)(ε)→ω(ε)=P
∑

ν

∫ 〈� |V |�ν(k)〉 〈�ν(k) |V |�〉
ε −λ(k)

dk, ε ∈D,

(A.18a)

�(0)(ε)→π
∑

ν

〈� |V|�ν(k)〉〈�ν(k) |V|�〉
dλ/dk

∣
∣
∣
∣
∣
ε=λ(k)

cot(πx(ε))=πf (ε)cot(πx(ε)),

(A.18b)
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where f (ε)=∑ν fν(ε) and where

fν(ε)= 〈� |V |�ν(k)〉 〈�ν(k) |V |�〉
dλ(k)

/
dk

∣
∣
∣
∣
∣
ε=λ(k)

·
{

1 if ε ∈ [a, b] ,
0 if ε /∈ [a, b] . (A.18c)

Combining above results one derives expression (17a) for the fractional shift
x(ε). This generalizes this expression to the case when the system Sb

∞ contains
several one-parameter eigenvalue bands which all have the same eigenvalue func-
tion λ(k).
(c) Fractional shift in the general case

Consider now a general case when the system Sb
∞ is described by the eigen-

value equation (2a) where eigenstates |�ν(k)〉 are orthonormalized according to
(2b). In this case range D contains a finite number of intervals such that in
each of those intervals eigenvalues λν(k) are exactly η � κ degenerate. Quantity
η depends on the interval and it can be as small as η=1 and as large as η=κ.
With an appropriate change of variables, each such interval can be treated as
a η-degenerate band considered in case (b) above. Accordingly, a general case
can be piecewise reduced to the previous case. One thus finds that all relations
derived above are still valid, provided expression (A.18c) is generalized to the
expression (4a).

One final point. Above we have assumed that each λν(k) is monotonic
increasing function of k. In this case dλν

/
dk �0 and hence dλν

/
dk = ∣∣dλν

/
dk
∣
∣. If

λν(k) is monotonic decreasing function of k, one has dλν

/
dk �0. With the sub-

stitution k′ =−k monotonic decreasing function λν(k) is transformed into mono-
tonic increasing finction which can be treated in the way described above. One
thus finds that in both cases one should use absolute value

∣
∣dλν

/
dk
∣
∣ of the deriv-

ative dλν

/
dk. Hence definition (4a) which includes both possibilities.

(d) Construction of the eigenstates
∣
∣�′

κ(k)
〉

that satisfy (A.15)
It remains to show that unperturbed system Sb

∞ contains a complete set of
eigenstates

∣
∣�′

ν(k)
〉

that satisfy (A.15).
Consider eigenvalue equation (A.13). Adjust phases of eigenstates |�ν(k)〉

in such a way that all matrix elements aν ≡〈� |V |�ν(k)〉 are real and nonneg-
ative and arrange matrix elements aν in a nondecreasing order, a1 � a2 � · · · �
aκ . Chose any ν 	=κ and replace eigenstates |�κ(k)〉 and |�ν(k)〉 with eigenstates∣
∣�′

κ(k)
〉

and
∣
∣�′

ν(k)
〉

according to

∣
∣�′

κ(k)
〉 = |�κ(k)〉 cosα +|�ν(k)〉 sin α,

∣
∣�′

ν(k)
〉 = −|�κ(k)〉 sin α +|�ν(k)〉 cosα. (A.19a)

This is an orthogonal transformation. Since original eigenstates |�κ(k)〉
and |�ν(k)〉 are orthonormalized, transformed eigenstates

∣
∣�′

κ(k)
〉

and
∣
∣�′

ν(k)
〉

are also orthonormalized. Corresponding matrix elements aκ and aν transform
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according to

a′
κ =aκ cosα +aν sin α, a′

ν =−aκ sin α +aν cosα. (A.19b)

This transformation represents a rotation of a two-dimensional vector with
the components aκ and aν by the angle α. Hence g′(k) = g(k), i.e. orthogonal
transformation (A.19a) does not change the value of the quantity g(k). Since
aκ �g(k) there exist an angle α such that a′

κ =g(k). This angle satisfies

cosα = gaκ ±aν

√
a2

κ +a2
ν −g2

a2
κ +a2

ν

. (A.19c)

In conclusion, transformation (A.19a) where α satisfies (A.19c) transforms
initial eigenstate |�κ(k)〉 into new eigenstate

∣
∣�′

κ(k)
〉

in such a way that a′
κ ≡〈

�
∣
∣V
∣
∣�′

κ(k)
〉= g(k) and g′(k) = g(k). This determines first eigenstate

∣
∣�′

κ(k)
〉
.

One can apply the same procedure to the remaining κ − 1 eigenstates to obtain
second transformed eigenstate

∣
∣�′

κ−1(k)
〉
. After repeating this procedure κ − 1

times, one constructs the set of κ eigenstates
∣
∣�′

µ(k)
〉

that satisfy (A.15). Since in
each step one has an orthogonal transformation of a type (A.19a), transformed
eigenstates

∣
∣�′

µ(k)
〉

are expressed in terms of the original eigenstates |�ν(k)〉
according to (A.14) where O(k) is an orthogonal matrix.

Above construction proves that, if the matrix elements 〈� |V |�ν(k)〉 are
real and nonnegative (which can be assumed without loss of generality), there
exists an orthogonal transformation O(k) of the original eigenstates |�ν(k)〉
such that transformed eigenstates

∣
∣�′

ν(k)
〉

satisfy (A.15). Transformation O(k)

with such property is not unique and there exists many orthonormalized sets{∣
∣�′

ν(k)
〉}

that satisfy (A.15). However, what is important is the existence of at
least one such set.

A.4.2. Calculation of the density ρ a(ε)

Consider the case (b) from the previous section (λ1(k) = λ2(k) = · · ·λκ(k))

and let εk ∈D be an eigenvalue of the finite combined system Sn+1. Using index-
ing convention k ≡ (µ, j) and l ≡ (ν, i) the corresponding normalized eigenstate
|�k〉≡ ∣∣�µ,j

〉
of this system can be written as

|�k〉= 1√
Qk

[

|�〉+β
∑

l

〈
�′

l

∣
∣V |� 〉

εk −λl

∣
∣�′

l

〉
]

. (A.3a′)

This can be expressed as a sum of three terms

|�k〉= 1√
Qk

[
|�〉+β

∣
∣
∣�

(0)
k

〉
+β

∣
∣
∣�

(1)
k

〉]
, (A.20a)
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where

∣
∣
∣�

(0)
k

〉
=

M(n)∑

l=−M(n)

〈
�′

k+l

∣
∣V |� 〉

εk −λk+l

∣
∣�′

k+l

〉
, (A.20b)

∣
∣
∣�

(1)
k

〉
=

∑

l<−M(n)

〈
�′

k+l

∣
∣V |� 〉

εk −λk+l

∣
∣�′

k+l

〉+
∑

l>M(n)

〈
�′

k+l

∣
∣V |� 〉

εk −λk+l

∣
∣�′

k+l

〉
, (A.20c)

and where

Qk =1+β2
〈
�

(0)
k

∣
∣
∣�

(0)
k

〉
+β2

〈
�

(1)
k

∣
∣
∣�

(1)
k

〉
. (A.20d)

Choose M(n) = ⌊n2/3
⌋

to be the largest integer smaller than n2/3. Func-

tion
∣
∣
∣�

(0)
k

〉
contains contributions to the perturbed eigenstate |�k〉 from ≈ 2n2/3

unperturbed states
∣
∣�′

k+l

〉∈Xb
n whose eigenvalues λk+l are close to εk, while func-

tion
∣
∣
∣�

(1)
k

〉
contains contributions from ≈n remaining states

∣
∣�′

k+l

〉∈Xb
n .

In order to calculate quantity Qk that determines normalization of the ei-
genstate |�k〉 one has to evaluate scalar products

〈
�

(0)
k

∣
∣
∣�

(0)
k

〉
=

M(n)∑

l=−M(n)

〈
�
∣
∣V
∣
∣�′

k+l

〉 〈
�′

k+l

∣
∣V |� 〉

(εk −λk+l)
2 , (A.21a)

〈
�

(1)
k

∣
∣
∣�

(1)
k

〉
=
∑

l<−M(n)

〈
�
∣
∣V
∣
∣�′

k+l

〉〈
�′

k+l

∣
∣V|� 〉

(εk −λk+l)2
+
∑

l>M(n)

〈
�
∣
∣V
∣
∣�′

k+l

〉〈
�′

k+l

∣
∣V|� 〉

(εk −λk+l)2
.

(A.21b)

All terms under summation sign in (A.21a) satisfy |l| � n2/3. Hence and
according to (A.15) matrix elements

〈
�
∣
∣V
∣
∣�′

k+l

〉≈ 〈� ∣∣V ∣∣�′
k

〉
are constant. Fur-

ther, (A.10) implies

∞∑

j=−∞

1

(x − j)2 = π2

sin2
(πx)

.

Hence and from (A6′′) one derives [1]

〈
�

(0)
k

∣
∣
∣�

(0)
k

〉
≈ κ

�λk

〈
�
∣
∣V
∣
∣�′

µ(kk)
〉 〈

�′
µ(kk)

∣
∣V |� 〉

dλ/dkk

π2

sin2
(πx(εk))

.

Intervals �λk scale as O(n−1). Hence if
〈
�
∣
∣V
∣
∣�′

µ(kk)
〉 	= 0 scalar product〈

�
(0)
k

∣
∣
∣�

(0)
k

〉
scales at least as O(n). In a similar way one finds

〈
�

(1)
k

∣
∣
∣�

(1)
k

〉
�
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O(n2/3) [1]. In a limit n→∞ one can neglect
〈
�

(1)
k

∣
∣
∣�

(1)
k

〉
relative to

〈
�

(0)
k

∣
∣
∣�

(0)
k

〉
.

This implies Qk ≈β2
〈
�

(0)
k

∣
∣
∣�

(0)
k

〉
. Further, according to (A.3a) probability wa

k =
|〈� |�k〉|2 to find the state |�k〉 in a local state |�〉 is wa

k =1
/
Qk. Hence

wa
k =�λk

(dλ/dk)k

β2κ
〈
�
∣
∣V
∣
∣�′

µ(kk)
〉 〈

�′
µ(kk)

∣
∣V |� 〉

sin2
(πx(εk))

π2
. (A.22)

In a limit n → ∞ one has wa
k → ρ a(ε)dε where ρ a(ε) ≡∑µ

∣
∣
〈
�
∣
∣�µ(ε)

〉∣
∣2.

Also in this limit dε = dλ [1]. Hence and from (A.22) and (A.16) one derives
expression (19). This proves this expression for the case when the system Sb

∞ is
described by the eigenvalue equation (A.13).

This result can be generalized to an arbitrary case of multiple eigenvalue
bands using the same approach described in the previous section concerning the
derivation of the fractional shift x(ε).

A.4.3. Degeneracy of the eigenstates �µ(ε)

Relations (18) and (21.a) imply

∑

µ

ρ a
µ(ε)=

∑

µ

∣
∣
〈
�
∣
∣�µ(ε)

〉∣
∣2.

For each ε ∈D functions
∣
∣�µ(ε)

〉
are defined up to the unitary transforma-

tion. Flexibility in the choice of the orthonormalized set
{∣
∣�µ(ε)

〉}
suggests that

it should be possible to choose this set in such a way as to satisfy 〈� |�ν(ε)〉=√
ρ a

ν (ε). By carefully analyzing relations (A.20b) and (A.20c) one finds that this
is indeed the case.
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